Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Mov Disord ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39051611

RESUMO

BACKGROUND: Recent imaging studies identified a brain network associated with clinical improvement following deep brain stimulation (DBS) in Parkinson's disease (PD), the PD response network. OBJECTIVES: This study aimed to assess the impact of neuromodulation on PD motor symptoms by targeting this network noninvasively using multifocal transcranial direct current stimulation (tDCS). METHODS: In a prospective, randomized, double-blinded, crossover trial, 21 PD patients (mean age 59.7 years, mean Hoehn & Yahr [H&Y] 2.4) received multifocal tDCS targeting the a-priori network. Twenty-minute sessions of tDCS and sham were administered on 2 days in randomized order. Movement Disorder Society-Unified Parkinson's Disease Rating Scale-Part III (MDS-UPDRS-III) scores were assessed. RESULTS: Before intervention, MDS-UPDRS-III scores were comparable in both conditions (stimulation days: 37.38 (standard deviation [SD] = 12.50, confidence interval [CI] = 32.04, 42.73) vs. sham days: 36.95 (SD = 13.94, CI = 30.99, 42.91), P = 0.63). Active stimulation resulted in a reduction by 3.6 points (9.7%) to 33.76 (SD = 11.19, CI = 28.98, 38.55) points, whereas no relevant change was observed after sham stimulation (36.43 [SD = 14.15, CI = 30.38, 42.48], average improvement: 0.5 [1.4%]). Repeated-measures analysis of variance (ANOVA) confirmed significance (main effect of time: F(1,20)=4.35, P < 0.05). Tukey's post hoc tests indicated MDS-UPDRS-III improvement after active stimulation (t [20] = 2.9, P = 0.03) but not after sham (t [20] = 0.42, P > 0.05). In a subset of patients that underwent DBS surgery later, their DBS response correlated with tDCS effects (R = 0.55, P(1) = 0.04). CONCLUSION: Noninvasive, multifocal tDCS targeting a DBS-derived network significantly improved PD motor symptoms. Despite a small effect size, this study provides proof of principle for the successful noninvasive neuromodulation of an invasively identified network. Future studies should investigate repeated tDCS sessions and their utility for screening before DBS surgery. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Mov Disord ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056204

RESUMO

OBJECTIVE: The Progressive Supranuclear Palsy quality of life scale (PSP-QoL) has been shown to be a useful tool for capturing health-related quality of life of patients in "everyday life" and in progressive supranuclear palsy (PSP) research. However, at 45 items in length, the questionnaire can take a long time, exhausting PSP patients, in particular if cognitive impaired, which can have a negative impact on the assessment. The aim of this study was to establish a condensed version of the PSP-QoL for research and routine clinical care. METHODS: In this retrospective study, data originating from a German cohort of PSP patients was analyzed. Data from 245 PSP patients were included in this study. The short PSP-QoL questionnaire was created using a two-factor solution and item-total and inter-item correlations for mental and physical aspects of daily living of the PSP-QoL followed by confirmatory factor analysis. RESULTS: The final scale included 12 items representing mental (five items) and physical symptoms (seven items). The specified two-factor model displayed an excellent fit in the confirmatory factor analysis. The short Progressive Supranuclear Palsy Quality of Life scale (PSP-ShoQoL) correlated moderately with the PSP Rating Scale (r [243] = 0.514, P < 0.001) and Geriatric depression scale (r [231] = 0.548, P < 0.001). Sensitivity to change confirmed a significant decrease in QoL after 12 months. DISCUSSION: In this study, we created a 12-item PSP-ShoQoL designed to "facilitate" daily clinical work that correlated strongly with the PSP-QoL and was sensitive to change. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

3.
J Parkinsons Dis ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39058451

RESUMO

Background: Postoperative delirium (POD) is a serious complication following deep brain stimulation (DBS) but only received little attention. Its main risk factors are higher age and preoperative cognitive deficits. These are also main risk factors for long-term cognitive decline after DBS in Parkinson's disease (PD). Objective: To identify risk factors for POD severity after DBS surgery in PD. Methods: 57 patients underwent DBS (21 female; age 60.2±8.2; disease duration 10.5±5.9 years). Preoperatively, general, PD- and surgery-specific predictors were recorded. Montreal Cognitive Assessment and the neuropsychological test battery CANTAB ConnectTM were used to test domain-specific cognition. Volumes of the cholinergic basal forebrain were calculated with voxel-based morphometry. POD severity was recorded with the delirium scales Confusion Assessment Method for Intensive Care Unit (CAM-ICU) and Nursing Delirium Scale (NU-DESC). Spearman correlations were calculated for univariate analysis of predictors and POD severity and linear regression with elastic net regularization and leave-one-out cross-validation was performed to fit a multivariable model. Results: 21 patients (36.8%) showed mainly mild courses of POD following DBS. Correlation between predicted and true POD severity was significant (spearman rho = 0.365, p = 0.001). Influential predictors were age (p < 0.001), deficits in attention and motor speed (p = 0.002), visual learning (p = 0.036) as well as working memory (p < 0.001), Nucleus basalis of Meynert volumes (p = 0.003) and burst suppression (p = 0.005). Conclusions: General but also PD- and surgery-specific factors were predictive of POD severity. These findings underline the multifaceted etiology of POD after DBS in PD. Valid predictive models must therefore consider general, PD- and surgery-specific factors.

4.
Brain ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954651

RESUMO

The ability to initiate volitional action is fundamental to human behaviour. Loss of dopaminergic neurons in Parkinson's disease is associated with impaired action initiation, also termed akinesia. Both dopamine and subthalamic deep brain stimulation (DBS) can alleviate akinesia, but the underlying mechanisms are unknown. An important question is whether dopamine and DBS facilitate de novo build-up of neural dynamics for motor execution or accelerate existing cortical movement initiation signals through shared modulatory circuit effects. Answering these questions can provide the foundation for new closed-loop neurotherapies with adaptive DBS, but the objectification of neural processing delays prior to performance of volitional action remains a significant challenge. To overcome this challenge, we studied readiness potentials and trained brain signal decoders on invasive neurophysiology signals in 25 DBS patients (12 female) with Parkinson's disease during performance of self-initiated movements. Combined sensorimotor cortex electrocorticography (ECoG) and subthalamic local field potential (LFP) recordings were performed OFF therapy (N = 22), ON dopaminergic medication (N = 18) and ON subthalamic deep brain stimulation (N = 8). This allowed us to compare their therapeutic effects on neural latencies between the earliest cortical representation of movement intention as decoded by linear discriminant analysis classifiers and onset of muscle activation recorded with electromyography (EMG). In the hypodopaminergic OFF state, we observed long latencies between motor intention and motor execution for readiness potentials and machine learning classifications. Both, dopamine and DBS significantly shortened these latencies, hinting towards a shared therapeutic mechanism for alleviation of akinesia. To investigate this further, we analysed directional cortico-subthalamic oscillatory communication with multivariate granger causality. Strikingly, we found that both therapies independently shifted cortico-subthalamic oscillatory information flow from antikinetic beta (13-35 Hz) to prokinetic theta (4-10 Hz) rhythms, which was correlated with latencies in motor execution. Our study reveals a shared brain network modulation pattern of dopamine and DBS that may underlie the acceleration of neural dynamics for augmentation of movement initiation in Parkinson's disease. Instead of producing or increasing preparatory brain signals, both therapies modulate oscillatory communication. These insights provide a link between the pathophysiology of akinesia and its' therapeutic alleviation with oscillatory network changes in other non-motor and motor domains, e.g. related to hyperkinesia or effort and reward perception. In the future, our study may inspire the development of clinical brain computer interfaces based on brain signal decoders to provide temporally precise support for action initiation in patients with brain disorders.

5.
NPJ Digit Med ; 7(1): 160, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890413

RESUMO

Dystonia is a neurological movement disorder characterised by abnormal involuntary movements and postures, particularly affecting the head and neck. However, current clinical assessment methods for dystonia rely on simplified rating scales which lack the ability to capture the intricate spatiotemporal features of dystonic phenomena, hindering clinical management and limiting understanding of the underlying neurobiology. To address this, we developed a visual perceptive deep learning framework that utilizes standard clinical videos to comprehensively evaluate and quantify disease states and the impact of therapeutic interventions, specifically deep brain stimulation. This framework overcomes the limitations of traditional rating scales and offers an efficient and accurate method that is rater-independent for evaluating and monitoring dystonia patients. To evaluate the framework, we leveraged semi-standardized clinical video data collected in three retrospective, longitudinal cohort studies across seven academic centres. We extracted static head angle excursions for clinical validation and derived kinematic variables reflecting naturalistic head dynamics to predict dystonia severity, subtype, and neuromodulation effects. The framework was also applied to a fully independent cohort of generalised dystonia patients for comparison between dystonia sub-types. Computer vision-derived measurements of head angle excursions showed a strong correlation with clinically assigned scores. Across comparisons, we identified consistent kinematic features from full video assessments encoding information critical to disease severity, subtype, and effects of neural circuit interventions, independent of static head angle deviations used in scoring. Our visual perceptive machine learning framework reveals kinematic pathosignatures of dystonia, potentially augmenting clinical management, facilitating scientific translation, and informing personalized precision neurology approaches.

6.
Nat Med ; 30(6): 1771-1783, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890531

RESUMO

Minimally invasive biomarkers are urgently needed to detect molecular pathology in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we show that plasma extracellular vesicles (EVs) contain quantifiable amounts of TDP-43 and full-length tau, which allow the quantification of 3-repeat (3R) and 4-repeat (4R) tau isoforms. Plasma EV TDP-43 levels and EV 3R/4R tau ratios were determined in a cohort of 704 patients, including 37 genetically and 31 neuropathologically proven cases. Diagnostic groups comprised patients with TDP-43 proteinopathy ALS, 4R tauopathy progressive supranuclear palsy, behavior variant FTD (bvFTD) as a group with either tau or TDP-43 pathology, and healthy controls. EV tau ratios were low in progressive supranuclear palsy and high in bvFTD with tau pathology. EV TDP-43 levels were high in ALS and in bvFTD with TDP-43 pathology. Both markers discriminated between the diagnostic groups with area under the curve values >0.9, and between TDP-43 and tau pathology in bvFTD. Both markers strongly correlated with neurodegeneration, and clinical and neuropsychological markers of disease severity. Findings were replicated in an independent validation cohort of 292 patients including 34 genetically confirmed cases. Taken together, the combination of EV TDP-43 levels and EV 3R/4R tau ratios may aid the molecular diagnosis of FTD, FTD spectrum disorders and ALS, providing a potential biomarker to monitor disease progression and target engagement in clinical trials.


Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Proteínas de Ligação a DNA , Vesículas Extracelulares , Demência Frontotemporal , Proteínas tau , Humanos , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/genética , Proteínas tau/sangue , Proteínas tau/metabolismo , Vesículas Extracelulares/metabolismo , Demência Frontotemporal/sangue , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Biomarcadores/sangue , Proteínas de Ligação a DNA/sangue , Proteínas de Ligação a DNA/genética , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Paralisia Supranuclear Progressiva/sangue , Paralisia Supranuclear Progressiva/diagnóstico , Isoformas de Proteínas/sangue
7.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894268

RESUMO

Excessive stride variability is a characteristic feature of cerebellar ataxias, even in pre-ataxic or prodromal disease stages. This study explores the relation of variability of arm swing and trunk deflection in relationship to stride length and gait speed in previously described cohorts of cerebellar disease and healthy elderly: we examined 10 patients with spinocerebellar ataxia type 14 (SCA), 12 patients with essential tremor (ET), and 67 healthy elderly (HE). Using inertial sensors, recordings of gait performance were conducted at different subjective walking speeds to delineate gait parameters and respective coefficients of variability (CoV). Comparisons across cohorts and walking speed categories revealed slower stride velocities in SCA and ET patients compared to HE, which was paralleled by reduced arm swing range of motion (RoM), peak velocity, and increased CoV of stride length, while no group differences were found for trunk deflections and their variability. Larger arm swing RoM, peak velocity, and stride length were predicted by higher gait velocity in all cohorts. Lower gait velocity predicted higher CoV values of trunk sagittal and horizontal deflections, as well as arm swing and stride length in ET and SCA patients, but not in HE. These findings highlight the role of arm movements in ataxic gait and the impact of gait velocity on variability, which are essential for defining disease manifestation and disease-related changes in longitudinal observations.


Assuntos
Braço , Marcha , Velocidade de Caminhada , Humanos , Masculino , Marcha/fisiologia , Feminino , Idoso , Braço/fisiopatologia , Braço/fisiologia , Velocidade de Caminhada/fisiologia , Pessoa de Meia-Idade , Tronco/fisiopatologia , Tronco/fisiologia , Movimento/fisiologia , Doenças Cerebelares/fisiopatologia , Caminhada/fisiologia , Fenômenos Biomecânicos/fisiologia , Amplitude de Movimento Articular/fisiologia , Tremor Essencial/fisiopatologia
8.
IEEE Open J Eng Med Biol ; 5: 306-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766539

RESUMO

Goal: Parkinson's disease (PD) can lead to gait impairment and Freezing of Gait (FoG). Recent advances in cueing technologies have enhanced mobility in PD patients. While sensor technology and machine learning offer real-time detection for on-demand cueing, existing systems are limited by the usage of smartphones between the sensor(s) and cueing device(s) for data processing. By avoiding this we aim at improving usability, robustness, and detection delay. Methods: We present a new technical solution, that runs detection and cueing algorithms directly on the sensing and cueing devices, bypassing the smartphone. This solution relies on edge computing on the devices' hardware. The wearable system consists of a single inertial sensor to control a stimulator and enables machine-learning-based FoG detection by classifying foot motion phases as either normal or FoG-affected. We demonstrate the system's functionality and safety during on-demand gait-synchronous electrical cueing in two patients, performing freezing of gait assessments. As references, motion phases and FoG episodes have been video-annotated. Results: The analysis confirms adequate gait phase and FoG detection performance. The mobility assistant detected foot motions with a rate above 94 % and classified them with an accuracy of 84 % into normal or FoG-affected. The FoG detection delay is mainly defined by the foot-motion duration, which is below the delay in existing sliding-window approaches. Conclusions: Direct computing on the sensor and cueing devices ensures robust detection of FoG-affected motions for on demand cueing synchronized with the gait. The proposed solution can be easily adopted to other sensor and cueing modalities.

9.
Nat Commun ; 15(1): 4662, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821913

RESUMO

Deep Brain Stimulation can improve tremor, bradykinesia, rigidity, and axial symptoms in patients with Parkinson's disease. Potentially, improving each symptom may require stimulation of different white matter tracts. Here, we study a large cohort of patients (N = 237 from five centers) to identify tracts associated with improvements in each of the four symptom domains. Tremor improvements were associated with stimulation of tracts connected to primary motor cortex and cerebellum. In contrast, axial symptoms are associated with stimulation of tracts connected to the supplementary motor cortex and brainstem. Bradykinesia and rigidity improvements are associated with the stimulation of tracts connected to the supplementary motor and premotor cortices, respectively. We introduce an algorithm that uses these symptom-response tracts to suggest optimal stimulation parameters for DBS based on individual patient's symptom profiles. Application of the algorithm illustrates that our symptom-tract library may bear potential in personalizing stimulation treatment based on the symptoms that are most burdensome in an individual patient.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Tremor , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Tremor/terapia , Tremor/fisiopatologia , Córtex Motor/fisiopatologia , Algoritmos , Hipocinesia/terapia , Hipocinesia/fisiopatologia , Substância Branca/patologia , Substância Branca/fisiopatologia , Rigidez Muscular/terapia , Cerebelo/fisiopatologia , Estudos de Coortes , Resultado do Tratamento
10.
Nat Commun ; 15(1): 3130, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605039

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) produces an electrophysiological signature called evoked resonant neural activity (ERNA); a high-frequency oscillation that has been linked to treatment efficacy. However, the single-neuron and synaptic bases of ERNA are unsubstantiated. This study proposes that ERNA is a subcortical neuronal circuit signature of DBS-mediated engagement of the basal ganglia indirect pathway network. In people with Parkinson's disease, we: (i) showed that each peak of the ERNA waveform is associated with temporally-locked neuronal inhibition in the STN; (ii) characterized the temporal dynamics of ERNA; (iii) identified a putative mesocircuit architecture, embedded with empirically-derived synaptic dynamics, that is necessary for the emergence of ERNA in silico; (iv) localized ERNA to the dorsal STN in electrophysiological and normative anatomical space; (v) used patient-wise hotspot locations to assess spatial relevance of ERNA with respect to DBS outcome; and (vi) characterized the local fiber activation profile associated with the derived group-level ERNA hotspot.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/fisiologia , Gânglios da Base/fisiologia , Neurônios/fisiologia
11.
NPJ Parkinsons Dis ; 10(1): 77, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580641

RESUMO

Subthalamic beta band activity (13-35 Hz) is known as a real-time correlate of motor symptom severity in Parkinson's disease (PD) and is currently explored as a feedback signal for closed-loop deep brain stimulation (DBS). Here, we investigate the interaction of movement, dopaminergic medication, and deep brain stimulation on subthalamic beta activity in PD patients implanted with sensing-enabled, implantable pulse generators. We recorded subthalamic activity from seven PD patients at rest and during repetitive movements in four conditions: after withdrawal of dopaminergic medication and DBS, with medication only, with DBS only, and with simultaneous medication and DBS. Medication and DBS showed additive effects in improving motor performance. Distinct effects of each therapy were seen in subthalamic recordings, with medication primarily suppressing low beta activity (13-20 Hz) and DBS being associated with a broad decrease in beta band activity (13-35 Hz). Movement suppressed beta band activity compared to rest. This suppression was most prominent when combining medication with DBS and correlated with motor improvement within patients. We conclude that DBS and medication have distinct effects on subthalamic beta activity during both rest and movement, which might explain their additive clinical effects as well as their difference in side-effect profiles. Importantly, subthalamic beta activity significantly correlated with motor symptoms across all conditions, highlighting its validity as a feedback signal for closed-loop DBS.

12.
Brain ; 147(6): 1975-1981, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38530646

RESUMO

Oculogyric crises are acute episodes of sustained, typically upward, conjugate deviation of the eyes. Oculogyric crises usually occur as the result of acute D2-dopamine receptor blockade, but the brain areas causally involved in generating this symptom remain elusive. Here, we used data from 14 previously reported cases of lesion-induced oculogyric crises and employed lesion network mapping to identify their shared connections throughout the brain. This analysis yielded a common network that included basal ganglia, thalamic and brainstem nuclei, as well as the cerebellum. Comparison of this network with gene expression profiles associated with the dopamine system revealed spatial overlap specifically with the gene coding for dopamine receptor type 2 (DRD2), as defined by a large-scale transcriptomic database of the human brain. Furthermore, spatial overlap with DRD2 and DRD3 gene expression was specific to brain lesions associated with oculogyric crises when contrasted to lesions that led to other movement disorders. Our findings identify a common neural network causally involved in the occurrence of oculogyric crises and provide a pathophysiological link between lesion locations causing this syndrome and its most common pharmacological cause, namely DRD2 blockade.


Assuntos
Encéfalo , Transtornos da Motilidade Ocular , Receptores de Dopamina D2 , Transcriptoma , Humanos , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transtornos da Motilidade Ocular/genética , Encéfalo/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Rede Nervosa/metabolismo , Idoso , Dopamina/metabolismo , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/metabolismo
13.
J Neurol ; 271(5): 2639-2648, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353748

RESUMO

BACKGROUND: Multiple system atrophy (MSA) is a complex and fatal neurodegenerative movement disorder. Understanding the comorbidities and drug therapy is crucial for MSA patients' safety and management. OBJECTIVES: To investigate the pattern of comorbidities and aspects of drug therapy in MSA patients. METHODS: Cross-sectional data of MSA patients according to Gilman et al. (2008) diagnostic criteria and control patients without neurodegenerative diseases (non-ND) were collected from German, multicenter cohorts. The prevalence of comorbidities according to WHO ICD-10 classification and drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were identified using AiDKlinik®. RESULTS: The analysis included 254 MSA and 363 age- and sex-matched non-ND control patients. MSA patients exhibited a significantly higher burden of comorbidities, in particular diseases of the genitourinary system. Also, more medications were prescribed MSA patients, resulting in a higher prevalence of polypharmacy. Importantly, the risk of potential drug-drug interactions, including severe interactions and contraindicated combinations, was elevated in MSA patients. When comparing MSA-P and MSA-C subtypes, MSA-P patients suffered more frequently from diseases of the genitourinary system and diseases of the musculoskeletal system and connective tissue. CONCLUSIONS: MSA patients face a substantial burden of comorbidities, notably in the genitourinary system. This, coupled with increased polypharmacy and potential drug interactions, highlights the complexity of managing MSA patients. Clinicians should carefully consider these factors when devising treatment strategies for MSA patients.


Assuntos
Comorbidade , Interações Medicamentosas , Atrofia de Múltiplos Sistemas , Polimedicação , Humanos , Atrofia de Múltiplos Sistemas/epidemiologia , Atrofia de Múltiplos Sistemas/tratamento farmacológico , Estudos Transversais , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Prevalência , Alemanha/epidemiologia
14.
Nat Neurosci ; 27(3): 573-586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388734

RESUMO

Frontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders. By analyzing which connections were modulated for optimal therapeutic response across these disorders, we segregated the frontal cortex into circuits that had become dysfunctional in each of them. Dysfunctional circuits were topographically arranged from occipital to frontal, ranging from interconnections with sensorimotor cortices in dystonia, the primary motor cortex in Tourette's syndrome, the supplementary motor area in Parkinson's disease, to ventromedial prefrontal and anterior cingulate cortices in obsessive-compulsive disorder. Our findings highlight the integration of deep brain stimulation with brain connectomics as a powerful tool to explore couplings between brain structure and functional impairments in the human brain.


Assuntos
Estimulação Encefálica Profunda , Córtex Motor , Doença de Parkinson , Humanos , Encéfalo , Córtex Motor/fisiologia , Doença de Parkinson/terapia , Mapeamento Encefálico
16.
Brain Stimul ; 17(1): 125-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266773

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an invasive treatment option for patients with Parkinson's disease. Recently, adaptive DBS (aDBS) systems have been developed, which adjust stimulation timing and amplitude in real-time. However, it is unknown how changes in parameters, movement states and the controllability of subthalamic beta activity affect aDBS performance. OBJECTIVE: To characterize how parameter choice, movement state and controllability interactively affect the electrophysiological and behavioral response to single threshold aDBS. METHODS: We recorded subthalamic local field potentials in 12 patients with Parkinson's disease receiving single threshold aDBS in the acute post-operative state. We investigated changes in two aDBS parameters: the onset time and the smoothing of real-time beta power. Electrophysiological patterns and motor performance were assessed while patients were at rest and during a simple motor task. We further studied the impact of controllability on aDBS performance by comparing patients with and without beta power modulation during continuous stimulation. RESULTS: Our findings reveal that changes in the onset time control the extent of beta power suppression achievable with single threshold adaptive stimulation during rest. Behavioral data indicate that only specific parameter combinations yield a beneficial effect of single threshold aDBS. During movement, action induced beta power suppression reduces the responsivity of the closed loop algorithm. We further demonstrate that controllability of beta power is a prerequisite for effective parameter dependent modulation of subthalamic beta activity. CONCLUSION: Our results highlight the interaction between single threshold aDBS parameter selection, movement state and controllability in driving subthalamic beta activity and motor performance. By this means, we identify directions for the further development of closed-loop DBS algorithms.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Movimento/fisiologia , Fenômenos Eletrofisiológicos
17.
Mov Disord ; 39(3): 526-538, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214203

RESUMO

BACKGROUND: Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD). OBJECTIVES: To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes. METHODS: We screened 1207 dystonia patients from Germany (DysTract consortium), Spain, and South Korea, and 1036 PD patients from Germany for pathogenic variants using a next-generation sequencing gene panel. The impact on DNA methylation of KMT2B variants was evaluated by analyzing the gene's characteristic episignature. RESULTS: We identified 171 carriers (109 with dystonia [9.0%]; 62 with PD [6.0%]) of 131 rare variants (minor allele frequency <0.005). A total of 52 patients (48 dystonia [4.0%]; four PD [0.4%, all with GCH1 variants]) carried 33 different (likely) pathogenic variants, of which 17 were not previously reported. Pathogenic biallelic variants in PRKRA were not found. Episignature analysis of 48 KMT2B variants revealed that only two of these should be considered (likely) pathogenic. CONCLUSION: This study confirms pathogenic variants in GCH1, GNAL, KMT2B, SGCE, THAP1, and TOR1A as relevant causes in dystonia and expands the mutational spectrum. Of note, likely pathogenic variants only in GCH1 were also found among PD patients. For DYT-KMT2B, the recently described episignature served as a reliable readout to determine the functional effect of newly identified variants. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Distonia/genética , Distúrbios Distônicos/genética , Mutação/genética , Frequência do Gene , Doença de Parkinson/genética , Chaperonas Moleculares/genética , Proteínas de Ligação a DNA/genética , Proteínas Reguladoras de Apoptose/genética
18.
Lancet ; 403(10423): 305-324, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245250

RESUMO

Although dopamine replacement therapy remains a core component of Parkinson's disease treatment, the onset of motor fluctuations and dyskinetic movements might require a range of medical and surgical approaches from a multidisciplinary team, and important new approaches in the delivery of dopamine replacement are becoming available. The more challenging, wide range of non-motor symptoms can also have a major impact on the quality of life of a patient with Parkinson's disease, and requires careful multidisciplinary management using evidence-based knowledge, as well as appropriately tailored strategies according to the individual patient's needs. Disease-modifying therapies are urgently needed to prevent the development of the most disabling refractory symptoms, including gait and balance difficulties, cognitive impairment and dementia, and speech and swallowing impairments. In the third paper in this Series, we present the latest evidence supporting the optimal treatment of Parkinson's disease, and describe an expert approach to many aspects of treatment choice where an evidence base is insufficient.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/terapia , Dopamina , Qualidade de Vida/psicologia , Seleção de Pacientes
19.
J Neurol ; 271(2): 782-793, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803149

RESUMO

BACKGROUND: Progressive supranuclear palsy (PSP) is usually diagnosed in elderly. Currently, little is known about comorbidities and the co-medication in these patients. OBJECTIVES: To explore the pattern of comorbidities and co-medication in PSP patients according to the known different phenotypes and in comparison with patients without neurodegenerative disease. METHODS: Cross-sectional data of PSP and patients without neurodegenerative diseases (non-ND) were collected from three German multicenter observational studies (DescribePSP, ProPSP and DANCER). The prevalence of comorbidities according to WHO ICD-10 classification and the prevalence of drugs administered according to WHO ATC system were analyzed. Potential drug-drug interactions were evaluated using AiDKlinik®. RESULTS: In total, 335 PSP and 275 non-ND patients were included in this analysis. The prevalence of diseases of the circulatory and the nervous system was higher in PSP at first level of ICD-10. Dorsopathies, diabetes mellitus, other nutritional deficiencies and polyneuropathies were more frequent in PSP at second level of ICD-10. In particular, the summed prevalence of cardiovascular and cerebrovascular diseases was higher in PSP patients. More drugs were administered in the PSP group leading to a greater percentage of patients with polypharmacy. Accordingly, the prevalence of potential drug-drug interactions was higher in PSP patients, especially severe and moderate interactions. CONCLUSIONS: PSP patients possess a characteristic profile of comorbidities, particularly diabetes and cardiovascular diseases. The eminent burden of comorbidities and resulting polypharmacy should be carefully considered when treating PSP patients.


Assuntos
Doenças Neurodegenerativas , Paralisia Supranuclear Progressiva , Humanos , Idoso , Paralisia Supranuclear Progressiva/tratamento farmacológico , Paralisia Supranuclear Progressiva/epidemiologia , Paralisia Supranuclear Progressiva/diagnóstico , Doenças Neurodegenerativas/epidemiologia , Estudos Transversais , Comorbidade
20.
Neuro Oncol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079480

RESUMO

BACKGROUND: Cerebellar mutism syndrome (CMS) is a common and debilitating complication of posterior fossa tumour surgery in children. Affected children exhibit communication and social impairments that overlap phenomenologically with subsets of deficits exhibited by children with Autism spectrum disorder (ASD). Although both CMS and ASD are thought to involve disrupted cerebro-cerebellar circuitry, they are considered independent conditions due to an incomplete understanding of their shared neural substrates. METHODS: In this study, we analyzed post-operative cerebellar lesions from 90 children undergoing posterior fossa resection of medulloblastoma, 30 of whom developed CMS. Lesion locations were mapped to a standard atlas, and the networks functionally connected to each lesion were computed in normative adult and paediatric datasets. Generalizability to ASD was assessed using an independent cohort of children with ASD and matched controls (n=427). RESULTS: Lesions in children who developed CMS involved the vermis and inferomedial cerebellar lobules. They engaged large-scale cerebellothalamocortical circuits with a preponderance for the prefrontal and parietal cortices in the paediatric and adult connectomes, respectively. Moreover, with increasing connectomic age, CMS-associated lesions demonstrated stronger connectivity to the midbrain/red nuclei, thalami and inferior parietal lobules and weaker connectivity to prefrontal cortex. Importantly, the CMS-associated lesion network was independently reproduced in ASD and correlated with communication and social deficits, but not repetitive behaviours. CONCLUSIONS: Our findings indicate that CMS-associated lesions result in an ASD-like network disturbance that occurs during sensitive windows of brain development. A common network disturbance between CMS and ASD may inform improved treatment strategies for affected children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...