Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 143(4): 044108, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26233108

RESUMO

So far most kinetic Monte Carlo (kMC) simulations of heterogeneously catalyzed gas phase reactions were limited to flat crystal surfaces. The newly developed program MoCKA (Monte Carlo Karlsruhe) combines graph-theoretical and lattice-based principles to be able to efficiently handle multiple lattices with a large number of sites, which account for different facets of the catalytic nanoparticle and the support material, and pursues a general approach, which is not restricted to a specific surface or reaction. The implementation uses the efficient variable step size method and applies a fast update algorithm for its process list. It is shown that the analysis of communication between facets and of (reverse) spillover effects is possible by rewinding the kMC simulation. Hence, this approach offers a wide range of new applications for kMC simulations in heterogeneous catalysis.

2.
Soft Matter ; 10(5): 688-93, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24835977

RESUMO

We investigated the thermodynamical properties of water exchanged in poly(l-glutamic acid)/poly(allylamine)hydrochloride (PGA/PAH) polyelectrolyte multilayers containing ferrocyanide. Oxidation/reduction of the ferrocyanide in the multilayer caused a reversible swelling/contraction of the film due to the uptake/release of counter ions and water. We used electrochemical quartz crystal microbalance and electrochemical microcalorimetry to correlate the amount of water with the accompanying entropy changes during electrochemical swelling of the multilayer for a series of different anions at different concentrations. The number of exchanged water molecules was highly dependent on the ionic strength and the type of anion in the buffer solution. However, the entropy change per exchanged water molecule was found to be independent of these two parameters. The water molecules in the polyelectrolyte multilayer have reduced the entropy compared to that of bulk water (≈-1 J mol(-1) K(-1)). A comparison of hydration entropies for free polyelectrolytes and PGA/PAH multilayers suggests that such systems are mainly stabilized by water release during multilayer construction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...