Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(48): E11406-E11414, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429313

RESUMO

Drug receptor site occupancy is a central pharmacology parameter that quantitatively relates the biochemistry of drug binding to the biology of drug action. Taxanes and epothilones bind to overlapping sites in microtubules (MTs) and stabilize them. They are used to treat cancer and are under investigation for neurodegeneration. In cells, they cause concentration-dependent inhibition of MT dynamics and perturbation of mitosis, but the degree of site occupancy required to trigger different effects has not been measured. We report a live cell assay for taxane-site occupancy, and relationships between site occupancy and biological effects across four drugs and two cell lines. By normalizing to site occupancy, we were able to quantitatively compare drug activities and cell sensitivities independent of differences in drug affinity and uptake/efflux kinetics. Across all drugs and cells tested, we found that inhibition of MT dynamics, postmitotic micronucleation, and mitotic arrest required successively higher site occupancy. We also found interesting differences between cells and drugs, for example, insensitivity of the spindle assembly checkpoint to site occupancy. By extending our assay to a mouse xenograft tumor model, we estimated the initial site occupancy required for paclitaxel to completely prevent tumor growth as 80%. The most important cellular action of taxanes for cancer treatment may be formation of micronuclei, which occurs over a broad range of site occupancies.


Assuntos
Antineoplásicos/metabolismo , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Taxoides/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Transporte Biológico , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Epotilonas/química , Epotilonas/metabolismo , Epotilonas/farmacologia , Humanos , Cinética , Microscopia , Microtúbulos/química , Microtúbulos/metabolismo , Taxoides/química , Taxoides/farmacologia
2.
Development ; 142(22): 3869-78, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26395483

RESUMO

Yolk provides an important source of nutrients during the early development of oviparous organisms. It is composed mainly of vitellogenin proteins packed into membrane-bound compartments called yolk platelets. Catabolism of yolk is initiated by acidification of the yolk platelet, leading to the activation of Cathepsin-like proteinases, but it is unknown how this process is triggered. Yolk catabolism initiates at cellularization in Drosophila melanogaster embryos. Using maternal shRNA technology we found that yolk catabolism depends on the Tor pathway and on the autophagy-initiating kinase Atg1. Whereas Atg1 was required for a burst of spatially regulated autophagy during late cellularization, autophagy was not required for initiating yolk catabolism. We propose that the conserved Tor metabolic sensing pathway regulates yolk catabolism, similar to Tor-dependent metabolic regulation on the lysosome.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Gema de Ovo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Western Blotting , Marcação In Situ das Extremidades Cortadas , Microscopia Eletrônica , Reação em Cadeia da Polimerase em Tempo Real , Corantes de Rosanilina , Transdução de Sinais/genética
3.
Methods Cell Biol ; 92: 11-30, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20409796

RESUMO

We describe the protocol through which we identify and characterize dynein subunit genes in the ciliated protozoan Tetrahymena thermophila. The gene(s) of interest is found by searching the Tetrahymena genome, and it is characterized in silico including the prediction of the open reading frame and identification of likely introns. The gene is then characterized experimentally, including the confirmation of the exon-intron organization of the gene and the measurement of the expression of the gene in nondeciliated and reciliating cells. In order to understand the function of the gene product, the gene is modified-for example, deleted, overexpressed, or epitope-tagged-using the straightforward gene replacement strategies available with Tetrahymena. The effect(s) of the dynein gene modification is evaluated by examining transformants for ciliary traits including cell motility, ciliogenesis, cell division, and the engulfment of particles through the oral apparatus. The multistepped protocol enables undergraduate students to engage in short- and long-term experiments. In our laboratory during the last 6 years, more than two dozen undergraduate students have used these methods to investigate dynein subunit genes.


Assuntos
Biologia Computacional/métodos , Dineínas/genética , Genes de Protozoários/genética , Tetrahymena/genética , Animais , Bioensaio , Cílios/metabolismo , Dineínas/metabolismo , Regulação da Expressão Gênica , Marcação de Genes , Fenótipo , Filogenia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...