Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(23): 8215-8223, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37260231

RESUMO

X-ray photon correlation spectroscopy (XPCS) is a versatile tool to measure dynamics on the nanometer to micrometer scale in bulk samples. XPCS has also been applied in grazing incidence (GI) geometry to examine the dynamics of surface layers. However, considering GI scattering experiments more universally, the GI geometry leads to a superposition of signals due to reflection and refraction effects, also known from the distorted-wave Born approximation (DWBA). In this paper, the impact of these reflection and refraction effects on the correlation analysis is determined experimentally by measuring grazing incidence transmission XPCS (GT-XPCS) and grazing incidence XPCS (GI-XPCS) simultaneously for a thin film sample, showing non-equilibrium dynamics. The results of the GI and GT geometry comparisons are combined within the framework of the standardly applied, simplified DWBA. These calculations allow identifying the main contributions of the detected signal from the leading scattering terms along the out-of-plane direction qz, which dominate the measured intensity pattern on the detector. In combination with the calculation of the non-linear effect of refraction in GTSAXS and GISAXS, it is possible to identify experimental conditions that can be chosen to run experiments and data analysis as close as possible to transmission XPCS and to explain which limitations for data interpretations are observed. Consequently, the beam exposure can be significantly reduced by using GI geometry only. Calculations of experimental settings prior to experiments are detailed to determine suitable qz regions for a variety of material systems measured in bulk-sensitive GI-XPCS experiments, allowing us to determine the scaling behavior of typical decay times as a function of q that is comparable to the scaling behavior obtained in distortion-free GT-XPCS or transmission XPCS experiments.

2.
Sci Total Environ ; 826: 154035, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35217061

RESUMO

When plastics enter the environment, they are exposed to abiotic and biotic impacts, resulting in degradation and the formation of micro- and nanoplastic. Microplastic is ubiquitous in every environmental compartment. Nevertheless, the underlying degradation processes are not yet fully understood. Here, we studied the abiotic degradation of commonly used semi-crystalline, low-density polyethylene (LDPE) in a long-term accelerated weathering experiment combining several macro- and microscopic methods. Based on our observations, the degradation of LDPE proceeds in three stages. Initially, LDPE objects are prone to abrasion, followed by a period of surface cracking. A large number of secondary particles with a high degree of crystallinity are formed, with sizes down to the nanometer scale. These particles consist of highly polar oligomers leading to agglomeration in the final stage. We therefore suppose that weathered microplastic and nanoplastic particles will attach to colloidal environmental matter. This offers an explanation for the absence of free nanoplastic particles in natural samples.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Polietileno , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...