Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 90(21): 9654-9663, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27535045

RESUMO

A high prevalence of Kaposi's sarcoma (KS) is seen in diabetic patients. It is unknown if the physiological conditions of diabetes contribute to KS development. We found elevated levels of viral lytic gene expression when Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells were cultured in high-glucose medium. To demonstrate the association between high glucose levels and KSHV replication, we xenografted telomerase-immortalized human umbilical vein endothelial cells that are infected with KSHV (TIVE-KSHV cells) into hyperglycemic and normal nude mice. The injected cells expressed significantly higher levels of KSHV lytic genes in hyperglycemic mice than in normal mice. We further demonstrated that high glucose levels induced the production of hydrogen peroxide (H2O2), which downregulated silent information regulator 1 (SIRT1), a class III histone deacetylase (HDAC), resulting in the epigenetic transactivation of KSHV lytic genes. These results suggest that high blood glucose levels in diabetic patients contribute to the development of KS by promoting KSHV lytic replication and infection. IMPORTANCE Multiple epidemiological studies have reported a higher prevalence of classic KS in diabetic patients. By using both in vitro and in vivo models, we demonstrated an association between high glucose levels and KSHV lytic replication. High glucose levels induce oxidative stress and the production of H2O2, which mediates the reactivation of latent KSHV through multiple mechanisms. Our results provide the first experimental evidence and mechanistic support for the association of classic KS with diabetes.

2.
Infect Immun ; 81(1): 259-70, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115039

RESUMO

Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens.


Assuntos
Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/patogenicidade , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Adesinas Bacterianas/metabolismo , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , GMP Cíclico/análogos & derivados , GMP Cíclico/genética , GMP Cíclico/imunologia , GMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Escherichia coli Enterotoxigênica/imunologia , Células Epiteliais/metabolismo , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Proteínas de Escherichia coli/metabolismo , Expressão Gênica/genética , Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/imunologia , Receptores de AMP Cíclico/genética , Receptores de AMP Cíclico/imunologia , Receptores de AMP Cíclico/metabolismo , Transcrição Gênica/genética , Transcrição Gênica/imunologia , Transcriptoma/genética , Transcriptoma/imunologia , Virulência
3.
Virology ; 386(2): 290-302, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19233445

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) encoded by ORF50 is a lytic switch protein for viral reactivation from latency. The expression of RTA activates the expression of downstream viral genes, and is necessary for triggering the full viral lytic program. Using chromatin immunoprecipitation assay coupled with a KSHV whole-genome tiling microarray (ChIP-on-chip) approach, we identified a set of 19 RTA binding sites in the KSHV genome in a KSHV-infected cell line BCBL-1. These binding sites are located in the regions of promoters, introns, or exons of KSHV genes including ORF8, ORFK4.1, ORFK5, PAN, ORF16, ORF29, ORF45, ORF50, ORFK8, ORFK10.1, ORF59, ORFK12, ORF71/72, ORFK14/ORF74, and ORFK15, the two origins of lytic replication OriLyt-L and OriLyt-R, and the microRNA cluster. We confirmed these RTA binding sites by ChIP and quantitative real-time PCR. We further mapped the RTA binding site in the first intron of the ORFK15 gene, and determined that it is RTA-responsive. The ORFK15 RTA binding sequence TTCCAGGAA TTCCTGGAA consists of a palindromic structure of two tandem repeats, of which each itself is also an imperfect inverted repeat. Reporter assay and electrophoretic mobility shift assay confirmed the binding of the RTA protein to this sequence in vitro. Sequence alignment with other RTA binding sites identified the RTA consensus binding motif as TTCCAGGAT(N)(0-16)TTCCTGGGA. Interestingly, most of the identified RTA binding sites contain only half or part of this RTA binding motif. These results suggest the complexity of RTA binding in vivo, and the involvement of other cellular or viral transcription factors during RTA transactivation of target genes.


Assuntos
Genoma Viral , Herpesvirus Humano 8/genética , Proteínas Imediatamente Precoces/metabolismo , Transativadores/metabolismo , Proteínas Virais/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular , DNA Viral/metabolismo , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Alinhamento de Sequência , Transativadores/genética , Proteínas Virais/genética
4.
J Virol ; 82(9): 4235-49, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18305042

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) latency is central to the evasion of host immune surveillances and induction of KSHV-related malignancies. The mechanism of KSHV latency remains unclear. Here, we show that the KSHV latent gene vFLIP promotes viral latency by inhibiting viral lytic replication. vFLIP suppresses the AP-1 pathway, which is essential for KSHV lytic replication, by activating the NF-kappaB pathway. Thus, by manipulating two convergent cellular pathways, vFLIP regulates both cell survival and KSHV lytic replication to promote viral latency. These results also indicate that the effect of the NF-kappaB pathway on KSHV replication is determined by the status of the AP-1 pathway and hence provide a mechanistic explanation for the contradictory role of the NF-kappaB pathway in KSHV replication. Since the NF-kappaB pathway is commonly activated during infection of gammaherpesviruses, these findings might have general implications for the control of gammaherpesviral latency.


Assuntos
Herpesvirus Humano 8/genética , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas Virais/genética , Proteínas Virais/fisiologia , Latência Viral/genética , Replicação Viral , Linhagem Celular , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores
5.
Virology ; 371(1): 139-54, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-17964626

RESUMO

Lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) promotes the progression of Kaposi's sarcoma (KS), a dominant malignancy in patients with AIDS. While 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced KSHV reactivation from latency is mediated by the protein kinase C delta and MEK/ERK mitogen-activated protein kinase (MAPK) pathways, we have recently shown that the MEK/ERK, JNK and p38 MAPK pathways modulate KSHV lytic replication during productive primary infection of human umbilical vein endothelial cells [Pan, H., Xie, J., Ye, F., Gao, S.J., 2006. Modulation of Kaposi's sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J. Virol. 80 (11), 5371-5382]. Here, we report that, besides the MEK/ERK pathway, the JNK and p38 MAPK pathways also mediate TPA-induced KSHV reactivation from latency. The MEK/ERK, JNK and p38 MAPK pathways were constitutively activated in latent KSHV-infected BCBL-1 cells. TPA treatment enhanced the levels of activated ERK and p38 but not those of activated JNK. Inhibitors of all three MAPK pathways reduced TPA-induced production of KSHV infectious virions in BCBL-1 cells in a dose-dependent fashion. The inhibitors blocked KSHV lytic replication at the early stage(s) of reactivation, and reduced the expression of viral lytic genes including RTA, a key immediate-early transactivator of viral lytic replication. Activation of MAPK pathways was necessary and sufficient for activating the promoter of RTA. Furthermore, we showed that the activation of RTA promoter by MAPK pathways was mediated by their downstream target AP-1. Together, these findings suggest that MAPK pathways might have general roles in regulating the life cycle of KSHV by mediating both viral infection and switch from viral latency to lytic replication.


Assuntos
Herpesvirus Humano 8/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Humanos , Ativação Viral , Latência Viral
6.
Cancer Treat Res ; 133: 69-127, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17672038

RESUMO

KSHV has been established as the causative agent of KS, PEL, and MCD, malignancies occurring more frequently in AIDS patients. The aggressive nature of KSHV in the context of HIV infection suggests that interactions between the two viruses enhance pathogenesis. KSHV latent infection and lytic reactivation are characterized by distinct gene expression profiles, and both latency and lytic reactivation seem to be required for malignant progression. As a sophisticated oncogenic virus, KSHV has evolved to possess a formidable repertoire of potent mechanisms that enable it to target and manipulate host cell pathways, leading to increased cell proliferation, increased cell survival, dysregulated angiogenesis, evasion of immunity, and malignant progression in the immunocompromised host. Worldwide, approximately 40.3 million people are currently living with HIV infection. Of these, a significant number are coinfected with KSHV. The complex interplay between the two viruses dramatically elevates the risk for development of KSHV-induced malignancies, KS, PEL, and MCD. Although HAART significantly reduces HIV viral load, the entire T-cell repertoire and immune function may not be completely restored. In fact, clinically significant immune deficiency is not necessary for the induction of KSHV-related malignancy. Because of variables such as lack of access to therapy noncompliance with prescribed treatment, failure to respond to treatment and the development of drug-resistant strains of HIV, KSHV-induced malignancies will continue to present as major health concerns.


Assuntos
Síndrome da Imunodeficiência Adquirida/complicações , Síndrome da Imunodeficiência Adquirida/virologia , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidade , Neoplasias/complicações , Neoplasias/virologia , Animais , Herpesvirus Humano 8/química , Humanos , Sarcoma de Kaposi/complicações , Sarcoma de Kaposi/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...