Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2300638, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530968

RESUMO

A polymer microarray based on the supramolecular ureido-pyrimidinone (UPy) moiety is fabricated to screen antimicrobial materials for their ability to support cell adhesion. UPy-functionalized additives, either cell-adhesive, antimicrobial or control peptides, are used, and investigated in different combinations at different concentrations, resulting in a library of 194 spots. These are characterized on composition and morphology to evaluate the microarray fabrication. Normal human dermal fibroblasts are cultured on the microarrays and cell adhesion to the spots is systematically analyzed. Results demonstrate enhanced cell adhesion on spots with combinations including the antimicrobial peptides. This study clearly proves the power of the high throughput approach in combination with supramolecular molecules, to screen additive libraries for desired biological response.

2.
ACS Omega ; 9(3): 3262-3275, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284094

RESUMO

The ability of the centrifugal Lab-on-a-Disc (LoaD) platform to closely mimic the "on bench" liquid handling steps (laboratory unit operations (LUOs)) such as metering, mixing, and aliquoting supports on-disc automation of bioassay without the need for extensive biological optimization. Thus, well-established bioassays, normally conducted manually using pipettes or using liquid handling robots, can be relatively easily automated in self-contained microfluidic chips suitable for use in point-of-care or point-of-use settings. The LoaD's ease of automation is largely dependent on valves that can control liquid movement on the rotating disc. The optimum valving strategy for a true low-cost and portable device is rotationally actuated valves, which are actuated by changes in the disc spin-speed. However, due to tolerances in disc manufacturing and variations in reagent properties, most of these valving technologies have inherent variation in their actuation spin-speed. Most valves are actuated through stepped increases in disc spin-speed until the motor reaches its maximum speed (rarely more than 6000 rpm). These manufacturing tolerances combined with this "analogue" mechanism of valve actuation limits the number of LUOs that can be placed on-disc. In this work, we present a novel valving mechanism called low-high-low serial dissolvable film (DF) valves. In these valves, a DF membrane is placed in a dead-end pneumatic chamber. Below an actuation spin-speed, the trapped air prevents liquid wetting and dissolving the membrane. Above this spin-speed, the liquid will enter and wet the DF and open the valve. However, as DFs take ∼40 s to dissolve, the membrane can be wetted, and the disc spin-speed reduced before the film opens. Thus, by placing valves in a series, we can govern on which "digital pulse" in spin-speeding a reagent is released; a reservoir with one serial valve will open on the first pulse, a reservoir with two serial valves on the second, and so on. This "digital" flow control mechanism allows the automation of complex assays with high reliability. In this work, we first describe the operation of the valves, outline the theoretical basis for their operation, and support this analysis with an experiment. Next, we demonstrate how these valves can be used to automate the solid-phase extraction of DNA on on-disc LAMP amplification for applications in plant pathogen detection. The disc was successfully used to extract and detect, from a sample lysed off-disc, DNA indicating the presence of thermally inactivated Clavibacter michiganensis ssp. michiganensis (Cmm), a bacterial pathogen on tomato leaf samples.

3.
Mol Syst Biol ; 13(8): 938, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827398

RESUMO

We performed integrative network analyses to identify targets that can be used for effectively treating liver diseases with minimal side effects. We first generated co-expression networks (CNs) for 46 human tissues and liver cancer to explore the functional relationships between genes and examined the overlap between functional and physical interactions. Since increased de novo lipogenesis is a characteristic of nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC), we investigated the liver-specific genes co-expressed with fatty acid synthase (FASN). CN analyses predicted that inhibition of these liver-specific genes decreases FASN expression. Experiments in human cancer cell lines, mouse liver samples, and primary human hepatocytes validated our predictions by demonstrating functional relationships between these liver genes, and showing that their inhibition decreases cell growth and liver fat content. In conclusion, we identified liver-specific genes linked to NAFLD pathogenesis, such as pyruvate kinase liver and red blood cell (PKLR), or to HCC pathogenesis, such as PKLR, patatin-like phospholipase domain containing 3 (PNPLA3), and proprotein convertase subtilisin/kexin type 9 (PCSK9), all of which are potential targets for drug development.


Assuntos
Carcinoma Hepatocelular/genética , Ácido Graxo Sintase Tipo I/genética , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , Hepatopatia Gordurosa não Alcoólica/genética , Biologia de Sistemas/métodos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Células Hep G2 , Humanos , Células K562 , Fígado/química , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Terapia de Alvo Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Especificidade de Órgãos , Mapas de Interação de Proteínas , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...