Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 337: 71-80, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245788

RESUMO

PEGylated liposomal doxorubicin (PLD, Caelyx®, Doxil®) has been suggested to show significant sex-based differences in plasma clearance, as well as high inter-individual variability that may be driven by monocyte counts in cancer patients. This study aimed to establish if these differences are similarly observed in rats, which exhibit similar liposome clearance mechanisms to humans, and to use this model to identify sources of inter-individual and sex-based pharmacokinetic variability. The plasma and lymphatic pharmacokinetics of PLD were evaluated in male and female rats by quantifying doxorubicin as well as the 3H-labelled liposome. In general, the pharmacokinetics of doxorubicin and the 3H-liposome did not differ significantly between male and female rats when corrected for body surface area. Female rats did, however, show significantly higher doxorubicin concentrations in lymph compared to male rats. With the exception of serum testosterone concentrations in males, none of the physiological parameters evaluated correlated with plasma clearance. Further, reanalysis of published human data that formerly reported sex-differences in PLD plasma clearance similarly revealed no significant differences in PLD plasma clearance between males and females with solid tumours, but increased plasma clearance in patients with Kaposi's sarcoma (generally HIV+/immunocompromised). These data suggest that with the exception of lymphatic exposure, there are unlikely to be significant sex effects in the pharmacokinetics of liposomes, but immune function may contribute to inter individual variability.


Assuntos
Doxorrubicina , Neoplasias , Animais , Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Feminino , Humanos , Lipossomos/uso terapêutico , Masculino , Neoplasias/tratamento farmacológico , Polietilenoglicóis/uso terapêutico , Ratos
2.
Pharm Res ; 37(11): 224, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33078255

RESUMO

PURPOSE: The aim of this work was to identify whether biochemical and physiological sources of mAb pharmacokinetic sex-effects could be identified in the rat model where target-mediated disposition is avoided. METHODS: Plasma and lymphatic pharmacokinetics of the humanised anti-EGFR antibody cetuximab, along with potential physiological and biochemical drivers of pharmacokinetic sex differences, were examined in male and female rats. Cetuximab was used as a model mAb since plasma clearance is slower in female patients. RESULTS: When plasma concentrations were normalised to dose, female rats displayed slower plasma clearance than males, but no significant differences were observed in liver and spleen biodistribution. Sex differences in apparent plasma clearance, however, were abolished after normalisation to body weight, surface area or fat-free mass. Significant sex differences were observed in plasma testosterone, endogenous IgG and fat free mass, but did not correlate with apparent clearance. Females did, however, show two-fold higher lymphatic exposure compared to males. CONCLUSIONS: These data suggested that mAbs more efficiently access lymph in females, but this does not affect plasma pharmacokinetics or biodistribution. Further, the data suggest that sex differences observed in humans could be a function of antigen density.


Assuntos
Antineoplásicos Imunológicos/farmacocinética , Cetuximab/farmacocinética , Sistema Linfático/metabolismo , Administração Intravenosa , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/sangue , Cetuximab/administração & dosagem , Cetuximab/sangue , Feminino , Masculino , Taxa de Depuração Metabólica , Ratos Sprague-Dawley , Fatores Sexuais , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...