Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 5: 180089, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762553

RESUMO

Various public transport (PT) agencies publish their route and timetable information with the General Transit Feed Specification (GTFS) as the standard open format. Timetable data are commonly used for PT passenger routing. They can also be used for studying the structure and organization of PT networks, as well as the accessibility and the level of service these networks provide. However, using raw GTFS data is challenging as researchers need to understand the details of the GTFS data format, make sure that the data contain all relevant modes of public transport, and have no errors. To lower the barrier for using GTFS data in research, we publish a curated collection of 25 cities' public transport networks in multiple easy-to-use formats including network edge lists, temporal network event lists, SQLite databases, GeoJSON files, and the GTFS data format. This collection promotes the study of how PT is organized across the globe, and also provides a testbed for developing tools for PT network analysis and PT routing algorithms.

2.
Eur J Neurosci ; 44(9): 2673-2684, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27602806

RESUMO

Networks have become a standard tool for analyzing functional magnetic resonance imaging (fMRI) data. In this approach, brain areas and their functional connections are mapped to the nodes and links of a network. Even though this mapping reduces the complexity of the underlying data, it remains challenging to understand the structure of the resulting networks due to the large number of nodes and links. One solution is to partition networks into modules and then investigate the modules' composition and relationship with brain functioning. While this approach works well for single networks, understanding differences between two networks by comparing their partitions is difficult and alternative approaches are thus necessary. To this end, we present a coarse-graining framework that uses a single set of data-driven modules as a frame of reference, enabling one to zoom out from the node- and link-level details. As a result, differences in the module-level connectivity can be understood in a transparent, statistically verifiable manner. We demonstrate the feasibility of the method by applying it to networks constructed from fMRI data recorded from 13 healthy subjects during rest and movie viewing. While independently partitioning the rest and movie networks is shown to yield little insight, the coarse-graining framework enables one to pinpoint differences in the module-level structure, such as the increased number of intra-module links within the visual cortex during movie viewing. In addition to quantifying differences due to external stimuli, the approach could also be applied in clinical settings, such as comparing patients with healthy controls.


Assuntos
Conectoma , Córtex Visual/fisiologia , Humanos , Imageamento por Ressonância Magnética , Modelos Neurológicos , Percepção Visual
3.
Hum Brain Mapp ; 37(3): 1066-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26686668

RESUMO

Previous functional connectivity studies have found both hypo- and hyper-connectivity in brains of individuals having autism spectrum disorder (ASD). Here we studied abnormalities in functional brain subnetworks in high-functioning individuals with ASD during free viewing of a movie containing social cues and interactions. Twenty-six subjects (13 with ASD) watched a 68-min movie during functional magnetic resonance imaging. For each subject, we computed Pearson's correlation between haemodynamic time-courses of each pair of 6-mm isotropic voxels. From the whole-brain functional networks, we derived individual and group-level subnetworks using graph theory. Scaled inclusivity was then calculated between all subject pairs to estimate intersubject similarity of connectivity structure of each subnetwork. Additional 54 individuals (27 with ASD) from the ABIDE resting-state database were included to test the reproducibility of the results. Between-group differences were observed in the composition of default-mode and ventro-temporal-limbic (VTL) subnetworks. The VTL subnetwork included amygdala, striatum, thalamus, parahippocampal, fusiform, and inferior temporal gyri. Further, VTL subnetwork similarity between subject pairs correlated significantly with similarity of symptom gravity measured with autism quotient. This correlation was observed also within the controls, and in the reproducibility dataset with ADI-R and ADOS scores. Our results highlight how the reorganization of functional subnetworks in individuals with ASD clarifies the mixture of hypo- and hyper-connectivity findings. Importantly, only the functional organization of the VTL subnetwork emerges as a marker of inter-individual similarities that co-vary with behavioral measures across all participants. These findings suggest a pivotal role of ventro-temporal and limbic systems in autism.


Assuntos
Transtorno Autístico/fisiopatologia , Encéfalo/fisiopatologia , Adulto , Mapeamento Encefálico , Bases de Dados Factuais , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Percepção de Movimento/fisiologia , Vias Neurais/fisiopatologia , Plasticidade Neuronal , Estimulação Luminosa , Reprodutibilidade dos Testes , Descanso , Índice de Gravidade de Doença , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...