Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298091

RESUMO

Adaptive plasticity of Breast Cancer stem cells (BCSCs) is strongly correlated with cancer progression and resistance, leading to a poor prognosis. In this study, we report the expression profile of several pioneer transcription factors of the Oct3/4 network associated with tumor initiation and metastasis. In the triple negative breast cancer cell line (MDA-MB-231) stably transfected with human Oct3/4-GFP, differentially expressed genes (DEGs) were identified using qPCR and microarray, and the resistance to paclitaxel was assessed using an MTS assay. The tumor-seeding potential in immunocompromised (NOD-SCID) mice and DEGs in the tumors were also assessed along with the intra-tumor (CD44+/CD24-) expression using flow cytometry. Unlike 2-D cultures, the Oct3/4-GFP expression was homogenous and stable in 3-D mammospheres developed from BCSCs. A total of 25 DEGs including Gata6, FoxA2, Sall4, Zic2, H2afJ, Stc1 and Bmi1 were identified in Oct3/4 activated cells coupled with a significantly increased resistance to paclitaxel. In mice, the higher Oct3/4 expression in tumors correlated with enhanced tumorigenic potential and aggressive growth, with metastatic lesions showing a >5-fold upregulation of DEGs compared to orthotopic tumors and variability in different tissues with the highest modulation in the brain. Serially re-implanting tumors in mice as a model of recurrence and metastasis highlighted the sustained upregulation of Sall4, c-Myc, Mmp1, Mmp9 and Dkk1 genes in metastatic lesions with a 2-fold higher expression of stem cell markers (CD44+/CD24-). Thus, Oct3/4 transcriptome may drive the differentiation and maintenance of BCSCs, promoting their tumorigenic potential, metastasis and resistance to drugs such as paclitaxel with tissue-specific heterogeneity.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Feminino , Neoplasias da Mama/metabolismo , Regulação para Cima , Camundongos SCID , Camundongos Endogâmicos NOD , Neoplasias de Mama Triplo Negativas/patologia , Paclitaxel/farmacologia , Paclitaxel/metabolismo , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
2.
J Neurosurg Sci ; 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342203

RESUMO

Glioblastoma multiforme (GBM) is a lethal brain tumor characterized by developmental hierarchical phenotypic heterogeneity, therapy resistance and recurrent growth. Neural stem cells (NSCs) from human central nervous system (CNS), and glioblastoma stem cells from patient-derived GBM (pdGSC) samples and cultured in both 2D well-plate and 3D monoclonal neurosphere culture system (pdMNCS). The pdMNCS model shows promise to establish a relevant 3D-tumor environment that maintains GBM cells in the stem cell phase within suspended neurospheres. Utilizing the pdMNCS, we examined GBM cell-lines for a wide spectrum of developmental cancer stem cell markers, including the early blastocyst inner-cell mass (ICM)-specific Nanog, Oct3/4,B, and CD133. We observed that MNCS epigenotype is recapitulated using gliomasphere-derived cells. CD133, the marker of GSC is robustly expressed in 3D-gliomaspheres and localized within the plasma membrane compartment. Conversely, gliomasphere cultures grown in conventional 2D culture quickly lost CD133 expression, indicating its variable expression is dependent on cell-culture conditions. Critically, this experiment demonstrates incomplete differentiation of cytoskeleton microtubules and intermediate filaments (IFs) of patient derived cells, similar to commercially available GBM cell lines. Subsequently, in order to determine whether Oct3/4 it was necessary for CD133 expression and cancer stemness, we transfected 2D and 3D culture with siRNA against Oct3/4 and found a significant reduction in gliomasphere formation. These results suggest that expression of Oct3/4,Aand CD133 suppress differentiation of GSCs.

3.
J Biol Chem ; 287(3): 2247-56, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22128169

RESUMO

We report that Sh3rf2, a homologue of the pro-apoptotic scaffold POSH (Plenty of SH3s), acts as an anti-apoptotic regulator for the c-Jun N-terminal kinase (JNK) pathway. siRNA-mediated knockdown of Sh3rf2 promotes apoptosis of neuronal PC12 cells, cultured cortical neurons, and C6 glioma cells. This death appears to result from activation of JNK signaling. Loss of Sh3rf2 triggers activation of JNK and its target c-Jun. Also, apoptosis promoted by Sh3rf2 knockdown is inhibited by dominant-negative c-Jun as well as by a JNK inhibitor. Investigation of the mechanism by which Sh3rf2 regulates cell survival implicates POSH, a scaffold required for activation of pro-apoptotic JNK/c-Jun signaling. In cells lacking POSH, Sh3rf2 knockdown is unable to activate JNK. We further find that Sh3rf2 binds POSH to reduce its levels by a mechanism that requires the RING domains of both proteins and that appears to involve proteasomal POSH degradation. Conversely, knockdown of Sh3rf2 promotes the stabilization of POSH protein and activation of JNK signaling. Finally, we show that endogenous Sh3rf2 protein rapidly decreases following several different apoptotic stimuli and that knockdown of Sh3rf2 activates the pro-apoptotic JNK pathway in neuronal cells. These findings support a model in which Sh3rf2 promotes proteasomal degradation of pro-apoptotic POSH in healthy cells and in which apoptotic stimuli lead to rapid loss of Sh3rf2 expression, and consequently to stabilization of POSH and JNK activation and cell death. On the basis of these observations, we propose the alternative name POSHER (POSH-eliminating RING protein) for the Sh3rf2 protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Córtex Cerebral/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sobrevivência Celular/fisiologia , Córtex Cerebral/citologia , Ativação Enzimática , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Células PC12 , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Transdução de Sinais/fisiologia
4.
Dev Neurosci ; 29(4-5): 355-62, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17762203

RESUMO

The c-Jun N-terminal kinase (JNK) pathway plays an important role in neuronal apoptosis both during normal CNS development and following stroke in adult animals. As with other MAP kinase pathways, scaffold proteins regulate JNK signaling. The scaffold protein POSH (Plenty of SH3s) enhances JNK activation and apoptosis. We identified a POSH homologue, POSH2, which was cloned from rat brain and is present in cortical neurons in vitro. POSH2 mRNA is expressed in a variety of tissues including brain, and this distribution partially overlaps with that of POSH. POSH2 overexpression promotes JNK activation in HEK293 cells and promotes apoptosis in neuronal PC12 cells, which is blocked by a dominant-negative c-Jun. Finally POSH2 contains a functional RING domain and enhances the stability of coexpressed mixed-lineage kinases. These results indicate that POSH2 may regulate JNK activation and consequent apoptosis under conditions of increased expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/fisiologia , Encéfalo/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/isolamento & purificação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Córtex Cerebral/metabolismo , Ativação Enzimática/fisiologia , Estabilidade Enzimática/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Dados de Sequência Molecular , Neurônios/metabolismo , Células PC12 , Estrutura Terciária de Proteína/fisiologia , RNA Mensageiro/metabolismo , Ratos
5.
J Biol Chem ; 282(2): 1288-95, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17095503

RESUMO

Nix, a pro-apoptotic BH3-only protein, promotes apoptosis of non-neuronal cells, although the mechanisms involved remain incompletely understood. Using a yeast two-hybrid screen with POSH (plenty of SH3 domains, a scaffold involved in activation of the apoptotic JNK/c-Jun pathway) as the bait, we identified an interaction between POSH and Nix. Co-immunoprecipitation and in vitro binding studies confirmed a direct interaction between POSH and Nix in mammalian cells. When overexpressed in HEK293 cells, Nix promotes apoptosis along with enhanced phosphorylation/activation of JNKs and their target c-Jun. These effects appear to be dependent on POSH because Nix does not promote either JNK/c-Jun phosphorylation or apoptosis of 293 cells that do not express POSH. Nix and POSH appear to mutually stabilize one another and this effect could contribute to their promotion of death. Past work showed induction of Nix transcripts in a cellular model of Parkinson disease based on neuronal PC12 cells exposed to 6-hydroxydopamine. Here, we confirm elevation of Nix protein in this model and that Nix over-expression causes apoptotic death of PC12 cells by a mechanism dependent on c-Jun activation. Expression of s-Nix, a dominant-negative form of Nix, protects neuronal PC12 cells from 6-hydroxydopamine but not from nerve growth factor deprivation. These results indicate that Nix promotes cell death via interaction with POSH and activation of the JNK/c-Jun pathway and that Nix protein is induced and contributes to cell death in a cellular model of Parkinson disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Doença de Parkinson/patologia , Animais , Apoptose/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Humanos , Rim/citologia , Proteínas de Membrana/genética , Camundongos , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Neurônios/patologia , Oxidopamina/farmacologia , Células PC12 , Doença de Parkinson/metabolismo , Fosforilação , Plasmídeos , Ligação Proteica , Ratos , Simpatolíticos/farmacologia , Técnicas do Sistema de Duplo-Híbrido
6.
J Biol Chem ; 281(22): 15517-24, 2006 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-16571722

RESUMO

A sequential pathway (the JNK pathway) that includes activation of Rac1/Cdc42, mixed lineage kinases, MAP kinase kinases 4 and 7, and JNKs plays a required role in many paradigms of apoptotic cell death. However, the means by which this pathway is assembled and directed toward apoptotic death has been unclear. Here, we report that propagation of the apoptotic JNK pathway requires the cooperative interaction of two molecular scaffolds, POSH and JIPs. POSH (plenty of SH3s) is a multidomain GTP-Rac1-interacting protein that binds and promotes activation of mixed lineage kinases. JIPs are reported to bind MAP kinase kinases 4/7 and JNKs. We find that POSH and JIPs directly associate with one another to form a multiprotein complex, PJAC (POSH-JIP apoptotic complex), that includes all of the known kinase components of the pathway. Our observations indicate that this complex is required for JNK activation and cell death in response to apoptotic stimuli.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sequência de Bases , Linhagem Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Primers do DNA/genética , Ativação Enzimática , Humanos , Técnicas In Vitro , Proteínas Quinases JNK Ativadas por Mitógeno/química , Sistema de Sinalização das MAP Quinases , Camundongos , Modelos Biológicos , Complexos Multiproteicos , Células PC12 , Ligação Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
EMBO J ; 22(2): 252-61, 2003 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-12514131

RESUMO

We report that the multidomain protein POSH (plenty of SH3s) acts as a scaffold for the JNK pathway of neuronal death. This pathway consists of a sequential cascade involving activated Rac1/Cdc42, mixed-lineage kinases (MLKs), MAP kinase kinases (MKKs) 4 and 7, c-Jun N-terminal kinases (JNKs) and c-Jun, and is required for neuronal death induced by various means including nerve growth factor (NGF) deprivation. In addition to binding GTP-Rac1 as described previously, we find that POSH binds MLKs both in vivo and in vitro, and complexes with MKKs 4 and 7 and with JNKs. POSH overexpression promotes apoptotic neuronal death and this is suppressed by dominant-negative forms of MLKs, MKK4/7 and c-Jun, and by an MLK inhibitor. Moreover, a POSH antisense oligonucleotide and a POSH small interfering RNA (siRNA) suppress c-Jun phosphorylation and neuronal apoptosis induced by NGF withdrawal. Thus, POSH appears to function as a scaffold in a multiprotein complex that links activated Rac1 and downstream elements of the JNK apoptotic cascade.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , MAP Quinase Quinase 4 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Proteínas de Transporte/genética , Peptídeos Penetradores de Células , Cisteína Endopeptidases/metabolismo , Proteínas do Citoesqueleto/genética , Ativação Enzimática , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase Quinases/metabolismo , Substâncias Macromoleculares , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Complexos Multienzimáticos/metabolismo , Complexos Multiproteicos , Fator de Crescimento Neural/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Células PC12 , Fosforilação , Complexo de Endopeptidases do Proteassoma , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/metabolismo , Dedos de Zinco , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...