Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 79(3): 179, 2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253091

RESUMO

ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)-the universal "currency", which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FOF1) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential. Although the key subunits of the enzyme remain highly conserved, subunit composition and structural organization of ATP synthases and their assemblies are significantly different. In addition, there are hypotheses that the enzyme might be involved in the formation of the mitochondrial permeability transition pore and play a role in regulation of the cell death processes. Dysfunctions of this enzyme lead to numerous severe disorders with high fatality levels. In our review, we focus on FOF1-structure-based approach towards development of new therapies by using FOF1 structural features inherited by the representatives of this enzyme family from different taxonomy groups. We analyzed and systematized the most relevant information about the structural organization of FOF1 to discuss how this approach might help in the development of new therapies targeting ATP synthases and design tools for cellular bioenergetics control.


Assuntos
Desenho de Fármacos , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Eucariotos/metabolismo , Filogenia , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/classificação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
2.
Acta Crystallogr D Struct Biol ; 73(Pt 7): 591-599, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28695859

RESUMO

Solutions of lysozyme in heavy water were studied by small-angle neutron scattering (SANS) at concentrations of 40, 20 and 10 mg ml-1 with and without the addition of precipitant, and at temperatures of 10, 20 and 30°C. In addition to the expected protein monomers, dimeric and octameric species were identified in solutions at the maximum concentration and close to the optimal conditions for crystallization. An optimal temperature for octamer formation was identified and both deviation from this temperature and a reduction in protein concentration led to a significant decrease in the volume fractions of octamers detected. In the absence of precipitant, only monomers and a minor fraction of dimers are present in solution.


Assuntos
Muramidase/química , Animais , Galinhas , Cristalização , Modelos Moleculares , Difração de Nêutrons , Multimerização Proteica , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...