Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6700): 1096-1099, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843325

RESUMO

Spontaneous mirror symmetry breaking by formation of chiral structures from achiral building blocks and emergent polar order are phenomena rarely observed in fluids. Separately, they have both been found in certain nematic liquid crystalline phases; however, they have never been observed simultaneously. Here, we report a heliconical arrangement of achiral molecules in the ferroelectric nematic phase. The phase is thus spontaneously both polar and chiral. Notably, the pitch of the heliconical structure is comparable to the wavelength of visible light, giving selective reflection controllable by temperature or application of a weak electric field. Despite bearing resemblance to the heliconical twist-bend nematic phase, this chiral ferroelectric nematic phase arises from electrical interactions that induce a noncollinear orientation of electric dipoles.

2.
Analyst ; 149(14): 3828-3838, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38855814

RESUMO

Norfloxacin (NOX), a broad spectrum fluoroquinolone (FQ) antibiotic, is commonly detected in environmental residues, potentially contributing to biological drug resistance. In this paper, an aptamer recognition probe has been used to develop a label-free liquid crystal-based biosensor for simple and robust optical detection of NOX in aqueous solutions. Stimuli-receptive liquid crystals (LCs) have been employed to report aptamer-target binding events at the LC-aqueous interface. The homeotropic alignment of LCs at the aqueous-LC interface is due to the self-assembly of the cationic surfactant cetyltrimethylammonium bromide (CTAB). In the presence of the negatively charged NOX aptamer, the ordering changes to planar/tilted. On addition of NOX, the aptamer-NOX binding causes redistribution of CTAB at the LC-aqueous interface and the homeotropic orientation is restored. This results in a bright-to-dark optical transition under a polarized optical microscope (POM). This optical transition serves as a visual indicator to mark the presence of NOX. The devised aptasensor demonstrates high specificity with a minimum detection limit of 5 nM (1.596 ppb). Moreover, the application of the developed aptasensor for the detection of NOX in freshwater and soil samples underscores its practical utility in environmental monitoring. This proposed LC-based method offers several advantages over conventional detection techniques for a rapid, feasible and convenient way to detect norfloxacin.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Lagos , Limite de Detecção , Cristais Líquidos , Norfloxacino , Norfloxacino/análise , Norfloxacino/química , Aptâmeros de Nucleotídeos/química , Cristais Líquidos/química , Lagos/análise , Lagos/química , Técnicas Biossensoriais/métodos , Solo/química , Antibacterianos/análise , Antibacterianos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Cetrimônio/química
3.
Phys Rev E ; 109(2-1): 024702, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491706

RESUMO

Twist-bend (N_{tb}) and ferroelectric (N_{F}) nematic liquid crystals exhibit several novel effects and new physical properties. Here, we report experimental studies on the phase diagram and some physical properties of binary mixtures of CB9CB and RM734 mesogens. Both N-N_{tb} and N-N_{F} phase transition temperatures and the corresponding enthalpies decrease significantly and, eventually, these transitions disappear at some intermediate compositions, stabilizing wide nematic phase (N). Temperature-dependent birefringence several degrees above the N-N_{tb} phase transition shows strong director tilt fluctuations. The critical range of the fluctuations increases with the nematic range and the critical exponent is consistent with the mean field. The spontaneous polarization of RM734 decreases drastically with the addition of CB9CB mesogen. The temperature dependence of the splay elastic constant of the mixtures' high-temperature nematic (N) phase strikingly differs from that of the pristine CB9CB and RM734 mesogens. The study shows that a small inclusion of either compound has a substantial effect on the phase diagram and physical properties.

4.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474458

RESUMO

This research introduces a novel liquid crystal molecular design approach based on the para-sexiphenyl (6P) structure. Six new liquid crystalline materials were synthesized, incorporating an alkyl terminal and lateral substitutions of the sexiphenyl core to achieve temperature-stable and broad nematic phases. The synthetic pathway involved cross-coupling, resulting in derivatives with strong nematogenic characteristics. Optical investigations demonstrated that the tested material had high birefringence values, making it promising for optical and electronic applications. These results open up new avenues of research and offer potential practical applications in electronics, photonics, optoelectronics and beyond.

5.
Phys Chem Chem Phys ; 26(11): 8748-8760, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416415

RESUMO

The self-assembly behaviour and the crystallization kinetics of two liquid crystal compounds containing 2',3'-difluorosubstituted terphenyl as the mesogenic core have been described. Calorimetric studies show that the linking bridge type affects the polymorphism of smectic phases. The CH2O.3 compound with the -CH2O- linking bridge connected with a longer methylene spacer possesses the chiral smectic phase with antiferroelectric properties (SmCA* phase), while the COO.6 liquid crystal with the -COO- linking bridge connected with a shorter alkyl chain forms the chiral smectic phase with ferroelectric properties (SmC* phase). Both compounds crystallize upon slow cooling, while fast cooling causes the vitrification of the conformationally disordered crystal phase. Dielectric measurements reveal the complex relaxation dynamics in the identified thermodynamic states. DFT calculations allow us to estimate the nature of relaxation processes.

6.
Chem Commun (Camb) ; 59(100): 14807-14810, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37937977

RESUMO

The ferroelectric nematic phase became the centre of interest of scientists because of its unique physical properties. The uniqueness of this particular phase results in its monotropic character in all known NF materials. Here we present the very first example of a compound with an enantiotropic ferroelectric nematic phase. Compound 3JK is complementary with already well known NF materials, i.e. RM734 and DIO and is characterized by moderately high dielectric anisotropy.

7.
Phys Chem Chem Phys ; 25(18): 13061-13071, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37114748

RESUMO

We investigated the electrical properties of the liquid crystal compound 4-(4-nitrophenoxycarbonyl)phenyl 2,4-dimethoxybenzoate, known as RM734, exhibiting a ferroelectric nematic phase. The influence of alternating (AC) and direct (DC) current electric fields on the switching process of the polarization vector and dielectric constant of planarly aligned ferronematic and nematic phases were examined. The decrease of the real part of electric permittivity in the ferronematic phase and the creation of a ferroelectric order in the nematic phase under a DC field were demonstrated. The analysis of the results reveals the latching of the ferroelectric state. The applied DC field created a ferroelectric mode in the nematic phase. A new model of collective and molecular relaxations considering the domain structure of the ferronematic phase was proposed. The temperature and DC field dependence of dielectric properties was shown. Spontaneous polarization was measured using the field reversal technique. The spontaneous polarization value reaches the maximum at a fixed temperature.

8.
Sci Adv ; 8(40): eabq7533, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36197989

RESUMO

The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality. In this work, we present electrically tunable microcavity exciton-polariton resonances in a Rashba-Dresselhaus spin-orbit coupling field. We show that different spin-orbit coupling fields and the reduced cavity symmetry lead to tunable formation of the Berry curvature, the hallmark of quantum geometrical effects. For this, we have implemented an architecture of a photonic structure with a two-dimensional perovskite layer incorporated into a microcavity filled with nematic liquid crystal. Our work interfaces spinoptronic devices with electronics by combining electrical control over both the strong light-matter coupling conditions and artificial gauge fields.

9.
Polymers (Basel) ; 14(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35335478

RESUMO

In this work, the synthesis of a new polysiloxane, poly {dimethylsiloxane-co-[4-(2,3-difluoro-4-hydroxyphenoxy) butyl] methylsiloxane} (dubbed PMFOS), is presented. This polymer exhibits high hydrogen bond acidity and was designed to be used as a sensor layer in gas sensors. The description of the synthetic route of the PMFOS has been divided into two main stages: the synthesis of the functional substituent 4-(but-3-en-1-yloxy)-2,3-difluorophenol, and the post-polymerization functionalization of the polysiloxane chain (methylhydrosiloxane-dimethylsiloxane copolymer) via hydrosilylation. The synthesized material was subjected to instrumental analysis, which confirmed its structure. The performed thermal analysis made it possible to determine some properties important for the sensor application, such as glass transition temperature and decomposition temperature. The results showed that PMFOS meets the requirements for materials intended for use in gas sensors based on acoustoelectric transducers.

10.
Phys Rev Lett ; 127(19): 190401, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797125

RESUMO

Spin-orbit interactions which couple the spin of a particle with its momentum degrees of freedom lie at the center of spintronic applications. Of special interest in semiconductor physics are Rashba and Dresselhaus spin-orbit coupling. When equal in strength, the Rashba and Dresselhaus fields result in SU(2) spin rotation symmetry and emergence of the persistent spin helix only investigated for charge carriers in semiconductor quantum wells. Recently, a synthetic Rashba-Dresselhaus Hamiltonian was shown to describe cavity photons confined in a microcavity filled with optically anisotropic liquid crystal. In this Letter, we present a purely optical realization of two types of spin patterns corresponding to the persistent spin helix and the Stern-Gerlach experiment in such a cavity. We show how the symmetry of the Hamiltonian results in spatial oscillations of the spin orientation of photons traveling in the plane of the cavity.

11.
Phys Chem Chem Phys ; 23(32): 17466-17478, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34355715

RESUMO

The impact of high pressure on molecular dynamics and the crystallization process in the smectic phase with antiferroelectric properties of partially fluorinated liquid crystal (S)-4'-(1-methyloctyloxycarbonyl)biphenyl-4-yl-4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy)heptyl-1-oxy]-benzoate (3F7HPhH7) was studied by broadband dielectric spectroscopy (BDS). By analyzing dielectric spectra measured under isobaric and isothermal conditions, the changes of the activation volume vs. temperature and the activation enthalpy vs. pressure have been determined to better understand the molecular system's behaviour in terms of its thermodynamic properties. The isothermal and isobar crystallization was studied by a BDS method along the trajectory of constant relaxation time τ on the (T, p) plane. The kinetics of this process was compared to that at ambient pressure, derived from the results of differential scanning calorimetry (DSC) and polarized optical microscopy (POM). The melt crystallization depends primarily on the formation of nuclei with the activation energy of approx. 50 kJ mol-1. This energy corresponds with the intramolecular movements of the carbonyl group in the rigid core. The behaviour of the apparent activation energies suggests that this process becomes easier with the progressive crystallized volume fractions. The obtained values of the Avrami exponent nA suggest that the crystal growth is three-dimensional. Additionally, we successfully used the scaling of dielectric response for experimental data. The scaling of the dielectric relaxation processes indicates that the dynamics and the behaviour of dielectric permittivity have the same origin for all phases regardless of the change in temperature and/or pressure.

12.
Materials (Basel) ; 14(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443176

RESUMO

The synthesis and characterization of new deuterated liquid crystal (LC) compounds based on phenyl tolane core is described in this paper. The work presents an alternative molecular approach to the conventional LC design. Correlations between molecular structure and mesomorphic and optical properties for compounds which are alkyl-hydrogen terminated and alkyl-deuterium, have been drawn. The compounds are characterized by mass spectrometry (electron ionization) analysis and infrared spectroscopy. They show enantiotropic nematic behavior in a broad temperature range, confirmed by a polarizing thermomicroscopy and differential scanning calorimetry. Detailed synthetic procedures are attached. Synthesized compounds show a significantly reduced absorption in the near-infrared (NIR) and medium-wavelength infrared (MWIR) radiation range, and stand as promising components of medium to highly birefringent liquid crystalline mixtures.

13.
Acta Crystallogr C Struct Chem ; 77(Pt 7): 435-440, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34216450

RESUMO

The crystal structures of difluorine derivatives of p-terphenyls (nTm) have been determined by single-crystal X-ray diffraction. For the unsymmetrical substituted compounds 2',3'-difluoro-4-methyl-p-terphenyl (1T0, C19H14F2) and 4-ethyl-2',3'-difluoro-4''-methyl-p-terphenyl (1T2, C21H18F2), the crystal structure is disordered, with molecules statistically entering the crystal in up and down orientations, with full superposition of all the atoms, except for those of the terminal groups (H/methyl for 1T0 and methyl/ethyl for 1T2). For triclinic 2',3'-difluoro-4,4''-dimethyl-p-terphenyl (1T1, C20H16F2), with the space group P-1, the two crystallographically independent molecules have the same conformation, which is different from monoclinic 1T0 (space group C2) and 1T2 (space group C2/c). A common feature of the conformation of the three compounds is the noncoplanar twisted arrangement of the three rings of the p-terphenyl moiety. Two-dimensional (2D) Hirshfeld fingerprint plots are consistent with H...H and C...H contacts in the crystal packing. For the three compounds, the phase behaviour has been investigated by POM (Petra/Osiris/Molinspiration) and differential scanning calorimetry (DSC) analysis. 1T2 is mesogenic, with enantiotropic nematic behaviour.

14.
Materials (Basel) ; 14(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925000

RESUMO

Liquid crystal materials composed of mixed nematic compounds find broad use in liquid crystal displays and photonic applications. A ternary mixture formed from three different nematic compounds shows peculiar behavior such as tunable electro-optical properties dependent on the frequency of the driving voltage. The paper presents an analysis of the response time and phase retardation of a frequency tunable nematic liquid crystal mixture (under code name 5005). This material possesses high birefringence (Δn = 0.32 at 633 nm) as well as high dielectric anisotropy (Δε = 6.3 at 100 Hz). The unique property of the 5005 mixture is frequency-controlled phase modulation, as in a dual frequency liquid crystal, while dielectric anisotropy goes to zero instead of being negative at high frequencies. For each component of the mixture, details on mesomorphic properties and their role in the formulation of the mixture are reported. The 5005 mixture was characterized by multiple investigation techniques, such as temperature dependence dielectric anisotropy, transmittance measurements image polarizing microscopy, and UV stability.

15.
Phys Chem Chem Phys ; 23(14): 8673-8688, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876028

RESUMO

The relaxation dynamics in the thermodynamic states of the glass-forming antiferroelectric liquid crystal (S)-4'-(1-methyloctyloxycarbonyl) biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-benzoate (3F7HPhH7) was studied by broadband dielectric spectroscopy (BDS). Two glass transitions were found at Tg,1 = 259 K and Tg,2 = 239 K, which were associated with the freezing of anti-phase motions and reorientation around the long molecular axis in the antiferroelectric SmCA* phase, respectively. The low temperature α2-relaxation process shows a Vogel-Fulcher-Tammann (VFT)-type temperature dependence of its structural relaxation time τ(T). The two secondary ß- and γ-relaxation modes ascribed to the intramolecular motions observed in the glassy state show Arrhenius behaviour of τ(T). Analysing the band shifts and the oscillator strengths of specific IR absorption bands and their temperature dependencies enables comparing them with the dielectrically determined relaxation dynamics. The kinetics of the isothermal cold crystallization in the temperature range between Tg,1 and Tg,2 was studied in detail using the Avrami and Avrami-Avramow models. This process depends primarily on the diffusion rate and the activation energy is equal to 132 kJ mol-1. The obtained values of the Avrami exponent nA suggest that the crystal growth is three-dimensional.

16.
Sci Rep ; 10(1): 10148, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576875

RESUMO

Three-dimensional (3D) photonic crystals like Blue Phases, self-assemble in highly organized structures with a sub-micrometer range periodicity, producing selective Bragg reflections in narrow bands. Current fabrication techniques are emerging at a fast pace, however, manufacturing large 3D monocrystals still remains a challenge, and controlling the crystal orientation of large crystals has not yet been achieved. In this work, we prepared ideal 3D Blue Phase macrocrystals with a controlled crystal orientation. We designed a method to obtain large monocrystals at a desired orientation and lattice size (or reflection wavelength) by adjusting the precursor materials formulation and a simple surface treatment. Moreover, using the same method, it is possible to predict unknown lattice orientations of Blue Phases without resorting to Kossel analysis. Producing large 3D photonic crystals that are also functional tunable structures is likely to have a direct impact on new photonic applications, like microcavity lasers, displays, 3D lasers, or biosensors.

17.
Science ; 366(6466): 727-730, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31699934

RESUMO

Spin-orbit interactions lead to distinctive functionalities in photonic systems. They exploit the analogy between the quantum mechanical description of a complex electronic spin-orbit system and synthetic Hamiltonians derived for the propagation of electromagnetic waves in dedicated spatial structures. We realize an artificial Rashba-Dresselhaus spin-orbit interaction in a liquid crystal-filled optical cavity. Three-dimensional tomography in energy-momentum space enabled us to directly evidence the spin-split photon mode in the presence of an artificial spin-orbit coupling. The effect is observed when two orthogonal linear polarized modes of opposite parity are brought near resonance. Engineering of spin-orbit synthetic Hamiltonians in optical cavities opens the door to photonic emulators of quantum Hamiltonians with internal degrees of freedom.

18.
Acta Crystallogr C Struct Chem ; 75(Pt 11): 1459-1464, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31686654

RESUMO

The title compound, C37H42, is a new mesogenic compound containing the fluorene moiety. It exhibits enantiotropic nematic liquid crystalline behaviour with melting at 125 °C and isotropization at 175 °C. The crystallographically independent unit contains two molecules oriented face-to-edge with respect to each other. The two molecules have nearly the same conformation of the bis-phenyl fluorene moiety. The molecular packing in the crystal phase is nematic-like.

19.
Eur Phys J E Soft Matter ; 42(9): 121, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506850

RESUMO

The chiral nematic S,S-2,7-bis(4-pentylphenyl)-9,9-dimethylbutyl9H-fluorene (5P-Am*FLAm*-P5) liquid crystal shows a complex phase diagram strongly dependent on thermal treatment as identified by Polarizing Optical Microscopy (POM) and differential scanning calorimeter (DSC). The molecular dynamics in various thermodynamics states was studied by means of broadband dielectric spectroscopy (BDS). The vitrification of a chiral nematic phase (N*) is manifested by a Vogel-Fulcher-Tammann (VFT)-type temperature dependence of structural relaxation time ([Formula: see text]). Three dielectric relaxation processes exhibiting Arrhenius-like thermal activation were found in conformationally disordered (condis) Cr1 and Cr2 structures. The isothermal cold crystallization process of Cr2 occurs in the metastable N* phase; however, in the non-isothermal experiments, the Cr2 phase is formed in the isotropic phase obtained on heating the metastable N* phase. The findings for the isothermal process were compared with those regarding non-isothermal crystallization.

20.
Opt Express ; 27(10): 14270-14282, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163878

RESUMO

In this work, optical properties of a cubic blue phase liquid crystal (BPLC) in photonic microstructures were investigated. The experiments were carried out in microcapillaries with different inner diameters and in a photonic crystal fiber (PCF). For the first time, white-light beam propagation through a BPLC (BP II) in a microcapillary with a 60-µm inner diameter at a distance of 26 mm was demonstrated. Furthermore, it was conclusively shown that the cylindrical geometry and the size of its inner diameter influence BP domains orientation, which can lead to a uniform texture of the BPLC with a dominant Bragg wavelength. This study also proves that a BPLC-filled PCF provides very attractive tunable properties. It was presented that by applying an external electric field, a control of the transmitted light intensity for particular wavelengths can be achieved, depending on the input polarization. Moreover, a range of the wavelengths corresponding to low transmission appeared to be tunable, whereas for x- and y-polarized light, respectively, both narrowing (from 16 nm to 9 nm) as well widening (from 13 nm to 22 nm) of the bandgaps were observed. Finally, the obtained experimental results were found qualitatively consistent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...