Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29743, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665564

RESUMO

Permissible limits of Pb2+ in drinking water are being reduced from 10 µgL-1 to 5 µgL-1, which calls for rapid, and highly reliable detection techniques. Electrochemical sensors have garnered attention in detection of heavy metal ions in environmental samples due to their ease of operation, low cost, and rapid detection responses. Selectivity, sensitivity and detection capabilities of these sensors, can be enhanced by modifying their working electrodes (WEs) with iron oxide nanoparticles (IONPs) and/or their composites. Therefore, this review is an in-depth analysis of the deployment of IONPs/nanocomposites in modification of electrochemical sensors for detection of Pb2+ in drinking water over the past decade. From the analyzed studies (n = 23), the optimal solution pH, deposition potential, and deposition time ranged between 3 and 5.6, -0.7 to -1.4 V vs Ag/AgCl, and 100-400 s, respectively. Majority of the studies employed square wave anodic stripping voltammetry (n = 16), in 0.1 M acetate buffer solution (n = 19) for detection of Pb2+. Limits of detection obtained (2.5 x 10-9 - 4.5 µg/L) were below the permissible levels which indicated good sensitivities of the modified electrodes. Despite the great performance of these modified electrodes, the primary source of IONPs has always been commercial iron-based salts in addition to the use of so many materials as modifying agents of these IONPs. This may limit reproducibility and sustainability of the WEs due to lengthy and costly preparation protocols. Steel and/or iron industrial wastes can be alternatively employed in generation of IONPs for modification of electrochemical sensors. Additionally, biomass-based activated carbons enriched with surface functional groups are also used in modification of bare IONPs, and subsequently bare electrodes. However, these two areas still need to be fully explored.

2.
Heliyon ; 10(6): e28153, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524616

RESUMO

Water treatment and reuse can avail more clean and safe water for human use. In this study, iron oxide waste powder generated from the steel pickling process was used to develop iron oxide nanoparticles (IONPs) using solution gelation synthesis process. The powder and developed IONPs were characterized by X-ray fluorescence and diffraction (XRF, XRD), scanning electron microscopy, Fourier-transform infrared spectroscopy, and Brunauer-Emmett-Teller (BET) analyses. Adsorption experiments were carried out on synthetic water with lead and chromium metal ions. The adsorption data were analysed with Langmuir and Freundlich models. Adsorption kinetics were also analysed with Pseudo-First-Order and Pseudo-Second-Order models using non-linear regression. The synthesized IONPs were porous with active surface functional groups of hydroxyl bonds, with BET specific surface area of 325.02 m2/g. XRD results confirmed the cubic spinel structure of IONPs with particle sizes of 20-30 nm. The nanoparticles at a dosage of 0.35 g in 10 mL for 50 min effectively removed Pb(II) and Cr(VI) metal ions up to 99.9% from both synthetic water and industrial wastewater. The adsorption capacity (qmax) of IONPs was found to be 417 and 326.80 for Pb(II) and Cr(VI) respectively. Freundlich isotherm model data fitted best for the removal of both metal ions. The regression values for kinetic models confirmed that pseudo-second-order best fit the adsorption of both Pb(II) and Cr(VI) confirming chemisorption processes. This study contributes to elucidating alternative application of pickling waste from the steel rolling mills for the benefit of heavy metal removal in industrial wastewater.

3.
Water Res ; 206: 117734, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655933

RESUMO

Faecal indicator organisms (FIOs) are limited in their ability to protect public health from the microbial contamination of drinking water because of their transience and time required to deliver a result. We evaluated alternative rapid, and potentially more resilient, approaches against a benchmark FIO of thermotolerant coliforms (TTCs) to characterise faecal contamination over 14 months at 40 groundwater sources in a Ugandan town. Rapid approaches included: in-situ tryptophan-like fluorescence (TLF), humic-like fluorescence (HLF), turbidity; sanitary inspections; and total bacterial cells by flow cytometry. TTCs varied widely in six sampling visits: a third of sources tested both positive and negative, 50% of sources had a range of at least 720 cfu/100 mL, and a two-day heavy rainfall event increased median TTCs five-fold. Using source medians, TLF was the best predictor in logistic regression models of TTCs ≥10 cfu/100 mL (AUC 0.88) and best correlated to TTC enumeration (ρs 0.81), with HLF performing similarly. Relationships between TLF or HLF and TTCs were stronger in the wet season than the dry season, when TLF and HLF were instead more associated with total bacterial cells. Source rank-order between sampling rounds was considerably more consistent, according to cross-correlations, using TLF or HLF (min ρs 0.81) than TTCs (min ρs 0.34). Furthermore, dry season TLF and HLF cross-correlated more strongly (ρs 0.68) than dry season TTCs (ρs 0.50) with wet season TTCs, when TTCs were elevated. In-situ TLF or HLF are more rapid and resilient indicators of faecal contamination risk than TTCs.


Assuntos
Água Potável , Água Subterrânea , Monitoramento Ambiental , Fezes , Espectrometria de Fluorescência , Microbiologia da Água
4.
Environ Monit Assess ; 193(4): 228, 2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33772658

RESUMO

This study investigated the occurrence and seasonal variation in concentrations of emerging organic contaminants (EOCs) in shallow groundwater underlying two peri-urban areas of Bwaise (highly urbanised) and Wobulenzi (moderately urbanised) in Uganda. Twenty-six antibiotics, 20 hydrocarbons, including 16 polycyclic aromatic hydrocarbons (PAHs), and 59 pesticides were investigated. Ampicillin and benzylpenicillin were the most frequently detected antibiotics in both areas, although at low concentrations to cause direct harm to human health, but could lead to a proliferation of antibiotic resistance genes. The most frequently detected hydrocarbons in Bwaise were naphthalene and xylene while anthracene and fluoranthene were the most frequent in Wobulenzi, also at low concentrations for ecological impact at long-term exposure. Molecular diagnostic ratios indicated pyrogenic and pyrolytic sources of PAHs in both areas. Cypermethrin (for vermin control) was the most frequent pesticide in Bwaise while metalaxyl (attributed to agriculture) was the most frequent in Wobulenzi. Banned organochlorines (8) were also detected in both areas in low concentrations. The pesticide concentrations between the two areas significantly differed (Z = - 3.558; p < 0.01), attributed to contrasting land-use characteristics. In Wobulenzi (wet season), the total pesticide concentrations at all the locations exceeded the European Community parametric guideline value while 75% of the detected compounds exceeded the individual pesticide guideline value. Thus, the antibiotic and pesticide residues in shallow groundwater underlying both Bwaise and Wobulenzi pose potential adverse ecological effects at long-term exposure. Monitoring of EOCs in both highly and moderately urbanised catchments should be strengthened towards mitigating associated risks.


Assuntos
Água Subterrânea , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Uganda , Poluentes Químicos da Água/análise
5.
Sci Rep ; 10(1): 15379, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958794

RESUMO

Fluorescent natural organic matter at tryptophan-like (TLF) and humic-like fluorescence (HLF) peaks is associated with the presence and enumeration of faecal indicator bacteria in groundwater. We hypothesise, however, that it is predominantly extracellular material that fluoresces at these wavelengths, not bacterial cells. We quantified total (unfiltered) and extracellular (filtered at < 0.22 µm) TLF and HLF in 140 groundwater sources across a range of urban population densities in Kenya, Malawi, Senegal, and Uganda. Where changes in fluorescence occurred following filtration they were correlated with potential controlling variables. A significant reduction in TLF following filtration (ΔTLF) was observed across the entire dataset, although the majority of the signal remained and thus considered extracellular (median 96.9%). ΔTLF was only significant in more urbanised study areas where TLF was greatest. Beneath Dakar, Senegal, ΔTLF was significantly correlated to total bacterial cells (ρs 0.51). No significant change in HLF following filtration across all data indicates these fluorophores are extracellular. Our results suggest that TLF and HLF are more mobile than faecal indicator bacteria and larger pathogens in groundwater, as the predominantly extracellular fluorophores are less prone to straining. Consequently, TLF/HLF are more precautionary indicators of microbial risks than faecal indicator bacteria in groundwater-derived drinking water.


Assuntos
Fezes/microbiologia , Corantes Fluorescentes/química , Água Subterrânea/microbiologia , Triptofano/química , África , Água Potável/química , Água Potável/microbiologia , Monitoramento Ambiental/métodos , Fluorescência , Água Subterrânea/química , Microbiologia da Água , Abastecimento de Água/métodos
7.
BMC Public Health ; 16: 361, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27121388

RESUMO

BACKGROUND: The effect of seasons on health outcomes is a reflection on the status of public health and the state of development in a given society. Evidence shows that in Sub-Saharan Africa, most infectious diseases flourish during the wet months of the year; while human activities in a context of constrained choices in life exacerbate the effects of seasons on human health. The paper argues that, the wet season and when human activities are at their peak, sanitation is most dire poor slum populations. METHODS: A shared latrine cleaning observation was undertaken over a period of 6 months in the slums of Kampala city. Data was collected through facility observations, user group meetings, Focus group discussions and, key informant interviews. The photos of the observed sanitation facilities were taken and assessed for facility cleanliness or dirt. Shared latrine pictures, observations, Focus Group Discussion, community meetings and key informant interviews were analysed and subjected to an analysis over the wet, dry and human activity cycles before a facility was categorised as either 'dirty' or 'clean'. RESULTS: Human activity cycles also referred to as socio-economic seasons were, school days, holidays, weekends and market days. These have been called 'impure' seasons, while the 'pure' seasons were the wet and dry months: improved and unimproved facilities were negatively affected by the wet seasons and the peak seasons of human activity. Wet seasons were associated with, mud and stagnant water, flooding pits and a repugnant smell from the latrine cubicle which made cleaning difficult. During the dry season, latrines became relatively cleaner than during the wet season. The presence of many child(ren) users during school days as well as the influx of market goers for the roadside weekly markets compromised the cleaning outcomes for these shared sanitation facilities. CONCLUSION: Shared latrine cleaning in slums is impacted by seasonal variations related to weather conditions and human activity. The wet seasons made the already bad sanitation situation worse. The seasonal fluctuations in the state of shared slum sanitation relate to a wider malaise in the population and an implied capacity deficit among urban authorities. Poor sanitation in slums is part of a broader urban mismanagement conundrum pointing towards the urgent need for multiple interventions aimed at improving the general urban living conditions well beyond sanitation.


Assuntos
Comportamento Cooperativo , Áreas de Pobreza , Saúde Pública , Saneamento , Estações do Ano , Banheiros , População Urbana , Adulto , Criança , Cidades , Feminino , Grupos Focais , Humanos , Masculino , Odorantes , Características de Residência , Instituições Acadêmicas , Uganda , Água , Tempo (Meteorologia)
8.
BMC Public Health ; 16: 120, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26846125

RESUMO

BACKGROUND: A pit latrine is the most basic form of improved sanitation which is currently used by a number of people around the globe. In spite of the wide spread use, known successes and advantages associated with pit latrines, they have received little attention in form of research and development. This review focuses on the usage and performance (filling, smell and insect nuisance) of pit latrines in urban areas of sub-Saharan Africa (SSA) and proposes approaches for their improvements and sustainability. METHODS: Current pit latrine usage within urban SSA was calculated from Joint Monitoring Programme (JMP) water and sanitation country-files. We conducted a literature search and review of documents on pit latrine usage, filling, smell and insect nuisances in urban areas of SSA. Findings of the review are presented and discussed in this paper. RESULTS AND DISCUSSION: Pit latrines are in use by more than half the urban population in SSA and especially among low income earners. An additional 36 million people in urban areas of SSA have adopted the pit latrine since 2007. However, their performance is unsatisfactory. Available literature shows that contributions have been made to address shortfalls related to pit latrine use in terms of science and technological innovations. However, further research is still needed. CONCLUSION: Any technology and process management innovations to pit latrines should involve scientifically guided approaches. In addition, development, dissemination and enforcement of minimum pit latrine design standards are important while the importance of hygienic latrines should also be emphasized.


Assuntos
Banheiros/normas , População Urbana/estatística & dados numéricos , África Subsaariana , Animais , Humanos , Higiene , Insetos , Odorantes , Fatores Socioeconômicos
9.
Int J Environ Health Res ; 25(1): 81-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24624936

RESUMO

Sanitation improvement is crucial in saving lives that are lost due to water contamination. Progress towards achieving full sanitation coverage is still slow in low-income informal settlements in most developing countries. Furthermore, resources are being wasted on installing facilities that are later misused or never used because they do not meet the local demand. Understanding demand for improved sanitation in the local context is critical if facilities are to be continually used. Various approaches that attempt to change peoples' behaviours or create demand have been reviewed to identify what they are designed to address. A multi-disciplinary research team using mixed methods is re-emphasised as a comprehensive approach for assessing demand for improved sanitation in low-income informal settlements, where the sanitation situation is more challenging than in other areas. Further research involving a multi-disciplinary research team and use of mixed methods to assess sanitation demand in informal settlements is needed.


Assuntos
Países em Desenvolvimento , Necessidades e Demandas de Serviços de Saúde , Pobreza , Saneamento , Saúde da População Urbana , Humanos
10.
J Water Health ; 11(1): 98-109, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23428553

RESUMO

In low income settlements where the quality of drinking water is highly contaminated due to poor hygienic practices at community and household levels, there is need for appropriate, simple, affordable and environmentally sustainable household water treatment technology. Solar water disinfection (SODIS) that utilizes both the thermal and ultra-violet effect of solar radiation to disinfect water can be used to treat small quantities of water at household level to improve its bacteriological quality for drinking purposes. This study investigated the efficacy of the SODIS treatment method in Uganda and determined the optimal condition for effective disinfection. Results of raw water samples from the study area showed deterioration in bacteriological quality of water moved from source to the household; from 3 to 36 cfu/100 mL for tap water and 75 to 126 cfu/100 mL for spring water, using thermotolerant coliforms (TTCs) as indicator microorganisms. SODIS experiments showed over 99.9% inactivation of TTCs in 6 h of exposure, with a threshold temperature of 39.5 ± 0.7°C at about 12:00 noon, in the sun during a clear sunny day. A mathematical optimal condition model for effective disinfection has been calibrated to predict the decline of the number of viable microorganisms over time.


Assuntos
Desinfecção/métodos , Purificação da Água/métodos , Abastecimento de Água/normas , Demografia , Condutividade Elétrica , Características da Família , Humanos , Concentração de Íons de Hidrogênio , Modelos Teóricos , Nefelometria e Turbidimetria , Nitratos , Oxigênio , Luz Solar , Temperatura , Uganda , Microbiologia da Água
11.
Int J Environ Health Res ; 20(4): 231-57, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20645199

RESUMO

Like most cities in developing countries, Uganda's capital city, Kampala, is experiencing urbanisation leading to an increase in population, and rapid development of peri-urban (informal) settlements. More than 60% of the city's population resides in these settlements which have the lowest basic service levels (sanitation, water supply, solid waste collection, stormwater and greywater disposal). A review of earlier studies on infrastructure development and sustainability within Kampala's peri-urban settlements, field surveys in a typical peri-urban settlement in the city (Bwaise III Parish), and structured interviews with key personnel from the National Water and Sewerage Corporation (NWSC), Kampala City Council (KCC), and the National Environment Management Authority (NEMA) were undertaken. Findings on current environmental health practices as well as perspectives of local communities and interviewed institutions on problems, constraints and possible solutions to basic service provision are presented. The implications of these viewpoints for possible environmental health interventions are presented.


Assuntos
Países em Desenvolvimento , Saúde Ambiental/tendências , Engenharia Sanitária/tendências , Surtos de Doenças/prevenção & controle , Humanos , Crescimento Demográfico , Medição de Risco , Uganda , Abastecimento de Água
12.
Ground Water ; 48(2): 284-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19245374

RESUMO

Deeply weathered crystalline rock aquifer systems comprising unconsolidated saprolite and underlying fractured bedrock (saprock) underlie 40% of sub-Saharan Africa. The vulnerability of this aquifer system to contamination, particularly in rapidly urbanizing areas, remains poorly understood. In order to assess solute and viral transport in saprolite derived from Precambrian gneiss, forced-gradient tracer experiments using chloride and Escherichia coli phage PhiX174 were conducted in southeastern Uganda. The bacteriophage tracer was largely unrecovered; adsorption to the weathered crystalline rock matrix is inferred and enabled by the low pH (5.7) of site ground water and the bacteriophage's relatively high isoelectric point (pI = 6.6). Detection of the applied PhiX174 phage in the pumping well discharge at early times during the experiment traces showed, however, that average ground water flow velocities exceed that of the inert solute tracer, chloride. This latter finding is consistent with observations in other hydrogeological environments where statistically extreme sets of microscopic flow velocities are considered to transport low numbers of fecal pathogens and their proxies along a selected range of linked ground water pathways. Application of a radial advection-dispersion model with an exponentially decaying source term to the recovered chloride tracer estimates a dispersivity (alpha) of 0.8 +/- 0.1 m over a distance of 4.15 m. Specific yield (S(y)) is estimated to be 0.02 from volume balance calculations based on tracer experiments. As single-site observations, our estimates of saprolite S(y) and alpha are tentative but provide a starting point for assessing the vulnerability of saprolite aquifers in sub-Saharan Africa to contamination and estimating quantitatively the impact of climate and abstraction on ground water storage.


Assuntos
Movimentos da Água , África Subsaariana , Monitoramento Ambiental , Sedimentos Geológicos , Uganda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...