Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16257, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009619

RESUMO

In order to comprehend the dynamics of disease propagation within a society, mathematical formulations are essential. The purpose of this work is to investigate the diagnosis and treatment of lung cancer in persons with weakened immune systems by introducing cytokines ( I L 2 & I L 12 ) and anti-PD-L1 inhibitors. To find the stable position of a recently built system TCD I L 2 I L 12 Z, a qualitative and quantitative analysis are taken under sensitive parameters. Reliable bounded findings are ensured by examining the generated system's boundedness, positivity, uniqueness, and local stability analysis, which are the crucial characteristics of epidemic models. The positive solutions with linear growth are shown to be verified by the global derivative, and the rate of impact across every sub-compartment is determined using Lipschitz criteria. Using Lyapunov functions with first derivative, the system's global stability is examined in order to evaluate the combined effects of cytokines and anti-PD-L1 inhibitors on people with weakened immune systems. Reliability is achieved by employing the Mittag-Leffler kernel in conjunction with a fractal-fractional operator because FFO provide continuous monitoring of lung cancer in multidimensional way. The symptomatic and asymptomatic effects of lung cancer sickness are investigated using simulations in order to validate the relationship between anti-PD-L1 inhibitors, cytokines, and the immune system. Also, identify the actual state of lung cancer control with early diagnosis and therapy by introducing cytokines and anti-PD-L1 inhibitors, which aid in the patients' production of anti-cancer cells. Investigating the transmission of illness and creating control methods based on our validated results will both benefit from this kind of research.


Assuntos
Antígeno B7-H1 , Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Humanos , Linfócitos T CD8-Positivos/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Citocinas/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Simulação por Computador
2.
PLoS One ; 19(3): e0299560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38483931

RESUMO

Mathematical formulations are crucial in understanding the dynamics of disease spread within a community. The aim of this work is to examine that the Lung Cancer detection and treatment by introducing IL2 and anti-PD-L1 inhibitor for low immune individuals. Mathematical model is developed with the created hypothesis to increase immune system by antibody cell's and Fractal-Fractional operator (FFO) is used to turn the model into a fractional order model. A newly developed system TCDIL2Z is examined both qualitatively and quantitatively in order to determine its stable position. The boundedness, positivity and uniqueness of the developed system are examined to ensure reliable bounded findings, which are essential properties of epidemic models. The global derivative is demonstrated to verify the positivity with linear growth and Lipschitz conditions are employed to identify the rate of effects in each sub-compartment. The system is investigated for global stability using Lyapunov first derivative functions to assess the overall impact of IL2 and anti-PD-L1 inhibitor for low immune individuals. Fractal fractional operator is used to derive reliable solution using Mittag-Leffler kernel. In fractal-fractional operators, fractal represents the dimensions of the spread of the disease and fractional represents the fractional ordered derivative operator. We use combine operators to see real behavior of spread as well as control of lung cancer with different dimensions and continuous monitoring. Simulations are conducted to observe the symptomatic and asymptomatic effects of Lung Cancer disease to verify the relationship of IL2, anti-PD-L1 inhibitor and immune system. Also identify the real situation of the control for lung cancer disease after detection and treatment by introducing IL2 cytokine and anti-PD-L1 inhibitor which helps to generate anti-cancer cells of the patients. Such type of investigation will be useful to investigate the spread of disease as well as helpful in developing control strategies from our justified outcomes.


Assuntos
Interleucina-2 , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Citocinas , Modelos Teóricos , Fractais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...