Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(19): 25280-25292, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30469631

RESUMO

We show theoretically and experimentally that distributed Bragg reflector (DBR) supports a surface electromagnetic wave exhibiting evanescent decay in the air and oscillatory decay in the DBR. The wave exists in TM polarization only. The field extension in the air may reach several wavelengths of light. Once gain medium is introduced into the DBR a novel class of diode lasers, semiconductor optical amplifiers, light-emitting diodes, etc. can be developed allowing a new type of in-plane or near-field light outcoupling. To improve the wavelength stability of the laser diode, a resonant cavity structure can be coupled to the DBR, allowing a coupled state of the cavity mode and the near-field mode. A GaAlAs-based epitaxial structure of a vertical-cavity surface-emitting laser (VCSEL) having an antiwaveguiding cavity and multiple GaInAs quantum wells as an active region was grown and processed as an in-plane Fabry-Pérot resonator with cleaved facets. Windows in the top stripe contact were made to facilitate monitoring of the optical modes. Three types of the optical modes were observed in electroluminescence (EL) studies under high current densities > 1 kA/cm2. Mode A with the longest wavelength is a VCSEL-like mode emitting normal to the surface. Mode B has a shorter wavelength, emitting light at two symmetric lobes tilted with respect to the normal to the surface in the direction parallel to the stripe. Mode C has the shortest wavelength and shifts with a temperature at a rate 0.06 nm/K. Polarization studies reveal predominantly TE emission for modes A and B and purely TM for mode C in agreement with the theory. Spectral position, thermal shift and polarization of mode C confirm it to be a coupled state of the cavity mode and near-field DBR surface-trapped mode.

2.
Opt Express ; 26(11): 13985-13994, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29877443

RESUMO

We report room temperature injection lasing in the yellow-orange spectral range (599-605 nm) in (AlxGa1-x)0.5In0.5P-GaAs diodes with 4 layers of tensile-strained InyGa1-yP quantum dot-like insertions. The wafers were grown by metal-organic vapor phase epitaxy side-by-side on (811), (211) and (322) GaAs substrates tilted towards the <111> direction with respect to the (100) surface. Four sheets of GaP-rich quantum barrier insertions were applied to suppress leakage of non-equilibrium electrons from the gain medium. Laser diodes having a threshold current densities of ~7-10 kA/cm2 at room temperature were realized for both (211) and (322) surface orientations at cavity lengths of ~1mm. Emission wavelength at room temperature ~600 nm is shorter by ~8 nm than previously reported. As an opposite example, the devices grown on (811) GaAs substrates did not show lasing at room temperature.

3.
Opt Express ; 25(14): 16754-16760, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789176

RESUMO

In this work we report, to the best of our knowledge, the first quantum well electrically-pumped microdisk lasers monolithically deposited on (001)-oriented Si substrate. The III-V laser structure was epitaxially grown by MOCVD on silicon with an intermediate MBE-grown Ge buffer. Microlasers with an InGaAs/GaAs quantum well active region were tested at room temperature. Under pulsed injection, lasing is achieved in microlasers with diameters of 23, 27, and 31 µm with a minimal threshold current density of 28 kA/cm2. Lasing spectrum is predominantly single-mode with a dominant mode linewidth as narrow as 35 pm.

4.
Opt Lett ; 40(17): 4022-5, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26368702

RESUMO

Optically pumped InAs quantum dot microdisk lasers with grooves etched on their surface by a focused ion beam are studied. It is shown that the radial grooves, depending on their length, suppress the lasing of specific radial modes of the microdisk. Total suppression of all radial modes, except for the fundamental radial one, is also demonstrated. The comparison of laser spectra measured at 78 K before and after ion beam etching for a microdisk of 8 µm in diameter shows a sixfold increase of mode spacing, from 2.5 to 15.5 nm, without a significant decrease of the dominant mode quality factor. Numerical simulations are in good agreement with experimental results.

5.
Opt Express ; 22(21): 25782-7, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401612

RESUMO

Focused ion beam is applied to quantum dot based microresonators to form pits or groove on their surface. The emission spectra of the resonators based lasers are significantly thinned out after the ion beam milling, and one or two modes become dominant instead of a group of modes having comparable intensities. The linewidth of the lasing mode is kept unchanged, whereas the lasing threshold demonstrates an insignificant growth.


Assuntos
Lasers , Pontos Quânticos/química , Microscopia Eletrônica de Varredura , Fenômenos Ópticos , Espectrometria de Fluorescência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...