Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 33(22): 5362-5370, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28510442

RESUMO

The diffusion coefficient of water adsorbed in hydrophilic porous materials, such as noncrystalline cellulose, depends on water activity. Faster diffusion at higher water concentrations is observed in experimental and modeling studies. In this paper, two asymptotic water concentrations, near-vacuum and fully saturated, are investigated at the surface of crystalline cellulose with molecular dynamics simulations. An increasing water concentration leads to significant changes in the free energy landscape due to perturbation of local electrostatic potential. Smoothening of strong energy minima, corresponding to sorption sites, and formation of layered structure facilitates water transport in the vicinity of cellulose. The determined transition probabilities and hydrogen bond stability reflect the changes in the energy landscape. As a result of a concentration increase, the emerging basins of attraction and spreading out of those existing in the diluted state lead to an increase in water entropy. Thermal fluctuations of cellulose are demonstrated to rearrange the landscape in the diluted limit, increase adsorbed water entropy, and decrease the water-cellulose H-bond lifetime.

2.
Artigo em Inglês | MEDLINE | ID: mdl-26382424

RESUMO

Molecular simulation of adsorption of water molecules in nanoporous amorphous biopolymers, e.g., cellulose, reveals nonlinear swelling and nonlinear mechanical response with the increase in fluid content. These nonlinearities result from hydrogen bond breakage by water molecules. Classical poroelastic models, employing porosity and pore pressure as basic variables for describing the "pore fluid," are not adequate for the description of these systems. There is neither a static geometric structure to which porosity can sensibly be assigned nor arrangements of water molecules that are adequately described by giving them a pressure. We employ molar concentration of water and chemical potential to describe the state of the "pore fluid" and stress-strain as mechanical variables. A thermodynamic description is developed using a model energy function having mechanical, fluid, and fluid-mechanical coupling contributions. The parameters in this model energy are fixed by the output of the initial simulation and validated with the results of further simulation. The poroelastic properties, e.g., swelling and mechanical response, are found to be functions both of the molar concentration of water and the stress. The basic fluid-mechanical coupling coefficient, the swelling coefficient, depends on the molar concentration of water and stress and is interpreted in terms of porosity change and solid matrix deformation. The difference between drained and undrained bulk stiffness is explained as is the dependence of these moduli on concentration and stress.


Assuntos
Biopolímeros/química , Simulação de Dinâmica Molecular , Água/química , Adsorção , Celulose/química , Elasticidade , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Dinâmica não Linear , Porosidade , Estresse Mecânico , Termodinâmica
3.
Langmuir ; 31(39): 10843-9, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26390260

RESUMO

The diffusion of H2O in three amorphous polymer-H2O systems is studied as a function of H2O content using molecular dynamics. A picture of H2O molecule motion comprising alternating steps of being bound at an adsorption site ("stop") and moving ("go") emerges. This picture is made quantitative. The bound time, frequency of stop-go steps, and tortuosity all decrease with H2O content. Fourier analysis of particle motion during bound time segments provides a measure of an attempt frequency that is connected quantitatively to the bound time and an activation energy of a hydrogen bond. For increasing H2O content, the polymer-H2O systems swell, leading to an increase in the diffusion coefficient and porosity and a decrease in activation energy.

4.
Biomacromolecules ; 16(9): 2972-8, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26313656

RESUMO

A two-phase model of a wood microfibril consisting of crystalline cellulose and amorphous hemicellulose is investigated with molecular dynamics in full range of sorption to understand the molecular origin of swelling and weakening of wood. Water is adsorbed in hemicellulose, and an excess of sorption is found at the interface, while no sorption occurs within cellulose. Water molecules adsorbed on the interface push away polymer chains, forcing the two phases to separate and causing breaking of h-bonds, particularly pronounced on the interface. Existence of two different regions in moisture response is demonstrated. At low moisture content, water is uniformly adsorbed within hemicellulose, breaking a small amount of hydrogen bonds. Microfibril does not swell, and the porosity does not change. As moisture content increases, water is adsorbed preferentially at the interface, which leads to additional swelling and porosity increase at the interface. Young's and shear moduli decrease importantly due to breaking of h-bonds and screening of the long-range interactions.


Assuntos
Polissacarídeos/química , Água/química , Adsorção
5.
ACS Macro Lett ; 3(10): 1037-1040, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35610788

RESUMO

We investigate the influence of adsorbed water on amorphous cellulose structure and properties, within the full range of moisture content from the dry state to saturation, by molecular dynamics simulation. Increasing water content results in overall swelling, a substantial decrease in stiffness, and higher diffusivity of the water molecules. The obtained sorption curve as well as the range of swelling and weakening are confirmed by experiments. The measured properties undergo a noticeable change at about 10% of moisture content, which suggests that a transition occurs in the porous system, indicating that the sorption process is stepwise. Our analysis of water network formation reveals that the onset of percolation coincides with the moisture content at which a transition in the material properties is observed. An in-depth analysis of the molecular mechanism of hydrogen bonding, van der Waals interactions, and water network in the two regimes enhances the understanding of the adsorption process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...