Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16686, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794092

RESUMO

The paper presents an analysis of the impact of plastic deformation using hydrostatic extrusion (HE) on the structural, mechanical and functional properties of pure copper for use as electrodes in the process of electro discharge machining (EDM). As part of the research, copper was subjected to the HE process with the maximum cumulative true strain equal to ɛcum = 3.89 obtained in 5 stages. The result was, a refinement of the microstructure with the grains elongated in the direction of extrusion, with a cross-sectional size of d2 = 228 nm. As the obtained material can be potentially used in the process of electro discharge machining, the copper specimens after the HE process were subjected to a comprehensive analysis to determine the mechanical, physical and functional properties of the material. A significant increase in strength (UTS) and yield strength (YS) of the HE-processed copper was obtained, reaching respectively UTS = 464 MPa and YS = 456 MPa at the maximum strain of ɛ = 3.89. Despite the clear strain-induced strengthening of the material, a very high electrical conductivity of not less than 97% was obtained. The electrodes made of copper after HE process have reduced erosion wear while maintaining a comparable or better quality of the machined surface. The best results were obtained for finish machining, where the electrical discharge wear was lower by 60% compared to the electrode made of non-processed copper. In addition, an improvement in the surface quality after the EDM process by 25% was observed when using the HE-processed electrodes.

2.
Materials (Basel) ; 16(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895768

RESUMO

The research presented in this paper focused on optimising the process of unconventional plastic forming by hydrostatic extrusion (HE) with post-processing heat treatment of a copper alloy (CuCrZr) for electro-discharge machining (EDM) applications. The treatment was carried out in such a way as to obtain a material with an improved microstructure, characterised by a significant increase in hardness and strength while maintaining a high electrical conductivity, thus achieving the main goal of reducing electrode wear in the EDM process. As part of the research, a material with an ultrafine-grained structure was obtained with an average grain size of d2 = 320 nm and a much higher strength of UTS = 645 MPa compared to the material in the initial state (UTS = 413 MPa). The post-processing treatment (ageing) allowed us to obtain a material with a high electrical conductivity after the HE process, at 78% IACS. The electrodes made of CuCrZr subjected to HE had a reduced electrical discharge wear in relation to electrodes made of the initial material. The best results were obtained for electrodes made of the material subjected to a five-stage HE process combined with ageing at 480 °C for 1 h. The electrical discharge wear in these electrodes was reduced by more than 50% compared to electrodes made of non-deformed copper.

3.
Materials (Basel) ; 16(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37176317

RESUMO

This article presents the influence of severe plastic deformation by hydrostatic extrusion (HE) on the thermal and structural properties of polyamide 6 (PA6). During the hydrostatic extrusion process, a fibrous structure oriented along the extrusion direction is formed, which was visualized during microscopic observations. The degree of crystallinity was analyzed by differential scanning calorimetry (DSC). Wide-angle X-ray scattering diffraction (WAXS) analysis was used to partially characterize the PA6 structure after the HE process. The contents of various forms of the crystalline phase in PA6 samples before and after the HE process were analyzed in fragments of spectroscopy in infrared (FTIR). The favorable properties of PA6 after the HE process were obtained after deformation under conditions generating an adiabatic temperature higher than the glass transition temperature and lower than the temperature of the onset of melting of the crystalline phase. Thermal analysis using DSC allowed us to conclude that in the PA6 after the HE process generating deformations in the range of 0.68-1.56, the proportion of the crystalline phase α increases in PA6. As the deformation increases in the HE process, the crystalline phase proportion increases by 12% compared to the initial material (before HE). The glass transition temperature of PA6 is ca. 50.6 °C, reduced for the sample after the HE process at a small deformation of 0.68 (PA6_0.68) to ca. 44.2 °C. For other samples, Tg is ca. 53.2-53.5 °C. As a result of the analysis of WAXS diffractograms of PA6 samples after various deformations in the HE process, the presence of typical peaks of phases α1 and α2 and γ was observed. The results of the FTIR spectroscopic analysis confirm these observations that as the deformation increases, the proportion of the crystalline phase α increases.

4.
Sci Rep ; 12(1): 16240, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171439

RESUMO

The study aimed to examine the effect of the hydrostatic extrusion (HE) process on the machinability of Ti grade 2 (Ti) in the turning process. After the deformation with true strain ɛ = 2.28, the microstructure was significantly refined to a grain size of 100 nm, resulting in an increase in the mechanical properties, UTS strength by 190%, YS yield strength by 230%Cutting forces for Ti in the initial state and after HE were analyzed at cutting depths ap = 0.3 mm and 0.5 mm, the variables were cutting speed Vc (20, 30 and 50 m/min) and feed rate f (0.08 and 0.13 m/s).The impact of the microstructure refinement in Ti after HE on the high cutting depth machinability deterioration (ap = 0.7 mm) was identified. This phenomenon is particularly noticeable at lower cutting speeds Vc = 20 and 30 m/min at which cutting forces are higher. Application tests of Ti after HE showed a significantly lower susceptibility to buckling during threading. As a result of the tests carried out for the Ti in the initial state, it was not possible to achieve the tolerance of pitch diameter of the thread required by standards, d2 at two of the three cutting depths tested. In turn, for the Ti after HE, the thread tolerances required by the standards were achieved for all tested cutting depths.


Assuntos
Plásticos , Titânio
5.
Materials (Basel) ; 15(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888359

RESUMO

The study presents an analysis of the influence of the plastic strain rate on the mechanical and structural properties of pure zinc. Thanks to the use of unconventional methods of plastic processing, the process of the equal channel angular pressing (ECAP) and the process of hydrostatic extrusion (HE), the tests were performed in a wide range of plastic strain rates, between 0.04 s-1 and 170 s-1. Plastic strain rate changes were carried out in the course of the significant plastic strain processes, and not on previously deformed samples. All tests were carried out at a constant value of plastic strain rate, ε ~ 2. A strong influence of the plastic strain rate on changes in the microstructure in zinc was observed during the tests. For the rates in the range of 0.04 s-1 to 0.53 s-1 its bimodal nature was observed, and in the range of 7 s-1 to 170 s-1 high homogeneity and evenness of grains related to the processes of continuous dynamic recrystallization was noticed. The effect of the strong homogenization of the microstructure was the increase in mechanical properties, yield point and tensile strength to the maximum values of UTS = 194 MPa, YS = 145 MPa at a strain rate of 170 s-1. Compared to the material with a bimodal microstructure, an over seven-fold increase in the elongation value was observed.

6.
Materials (Basel) ; 15(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806702

RESUMO

The present study investigates the correlation between mechanical properties and resistance to corrosion of hydrostatically extruded aluminum alloy 7075. Supersaturated solid solutionized samples undergo a plastic deformation process, followed by both natural and artificial aging. Furthermore, two types of hydrostatic extrusion are applied to the samples: single-stepped and double-stepped. This process is shown to influence grain refinement and the precipitation process, resulting in changes in the electrochemical properties of the samples. Hydrostatic extrusion combined with aging is shown to cause an increase in mechanical strength ranging from 50 MPa to 135 MPa in comparison to coarse-grained sample subjected to T6 heat treatment. The highest value of tensile strength is obtained for a sample subjected to single-step hydrostatic extrusion followed by natural aging. This strength increase is caused by refinement of the microstructure, in addition to the small size and number of precipitates at the grain boundaries, which are coarsened by artificial aging. Hydrostatic extrusion is also shown to increase resistance to corrosion, with the T6-treated coarse-grained sample being most susceptible to corrosion attack.

7.
Materials (Basel) ; 15(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35744404

RESUMO

In this paper, the corrosion resistance and mechanical properties of the 7075 aluminum alloy are studied. The alloy was deformed by hydrostatic extrusion and then aged both naturally and artificially. Results are compared with those of coarse-grained material subjected to T6 heat treatment. The aim of the research is to find the optimal correlation between the mechanical properties and the corrosion resistance of the alloy. To this end, static tensile tests with subsequent fractography, open circuit potential, and potentiodynamic polarization tests in 0.05 M NaCl were conducted. Obtained results show that a combination of precipitate hardening and a deformed microstructure leads to increased mechanical strength with high anisotropy due to the presence of fibrous grains. Plastic deformation increases susceptibility to corrosion due to the increased number of grain boundaries, which act as paths along that corrosion propagates. However, further artificial aging incurs a positive effect on corrosion resistance due to changes in the chemical composition of the matrix as a result of the precipitation process.

8.
Materials (Basel) ; 14(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34683632

RESUMO

This paper presents the effect of severe plastic deformation obtained using the cold hydrostatic extrusion (HE) method on the mechanical and structural properties of polyamide 6 (PA6). As a result of the plastic strain, a significant increase in ultimate tensile strength and tensile modulus were observed. Tensile strength rose by almost 500%, up to the level of 508 MPa, whereas the tensile modulus rose by about 65%. Flexural modulus increase was also observed to 3230 MPa, i.e., by approx. 160%. As a result of high plastic deformation, the structure of the polyamide 6 changed significantly, as evidenced by its fibrous nature as presented in the results of the scanning electron microscopy inspection (SEM). The surface quality of products investigated was tested using profilometry.

9.
Materials (Basel) ; 14(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801045

RESUMO

The paper presents the microstructural investigation of a friction-welded joint made of 316L stainless steel with an ultrafine-grained structure obtained by hydrostatic extrusion (HE). Such a plastically deformed material is characterized by a metastable state of energy equilibrium, increasing, among others, its sensitivity to high temperatures. This feature makes it difficult to weld ultra-fine-grained metals without losing their high mechanical properties. The use of high-speed friction welding and a friction time of <1 s reduced the scale of the weakening of the friction joint in relation to result obtained in conventional rotary friction welding. The study of changes in the microstructure of individual zones of the friction joint was carried out on an optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and electron backscattered diffraction (EBSD) analysis system. The correlation between the microstructure and hardness of the friction joint is also presented. The heat released during the high-speed friction welding initiated the process of dynamic recrystallization (DRX) of single grains in the heat-affected zone (HAZ). The additional occurrence of strong plastic deformations (in HAZ) during flash formation and internal friction (in the friction weld and high-temperature HAZ) contributed to the formation of a highly deformed microstructure with numerous sub-grains. The zones with a microstructure other than the base material were characterized by lower hardness. Due to the complexity of the microstructure and its multifactorial impact on the properties of the friction-welded joint, strength should be the criterion for assessing the properties of the joint.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...