Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 143(24): 243129, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723614

RESUMO

We devise a simple coarse-grained model of a nanoparticle exhibiting attractive interactions with a polymer in good solvent and use Monte Carlo simulations to study how adsorption of the polymer affects the hydrodynamic properties of the nanoparticle. We show that the hydrodynamic radius of the polymer-decorated nanoparticle increases with increasing polymer chain length or concentration. The slowdown of diffusion of the sticky nanoparticles is predicted to occur at polymer concentrations many orders of magnitude below the overlap concentration, in contrast with the case of non-sticky nanoparticles. To rationalize our findings, we employ the concept of trains, loops, and tails, which has been used in earlier theoretical studies of polymer adsorption at interfaces. We show that dominant contribution to the increase of the hydrodynamic radius of the polymer-decorated nanoparticles comes from the tails, which stretch far from the surface. On the contrary, the much more numerous but shorter loops and tails play only a minor role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...