Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732262

RESUMO

Vitamin B12 (cobalamin) is an essential nutrient for humans and animals. Metabolically active forms of B12-methylcobalamin and 5-deoxyadenosylcobalamin are cofactors for the enzymes methionine synthase and mitochondrial methylmalonyl-CoA mutase. Malfunction of these enzymes due to a scarcity of vitamin B12 leads to disturbance of one-carbon metabolism and impaired mitochondrial function. A significant fraction of the population (up to 20%) is deficient in vitamin B12, with a higher rate of deficiency among elderly people. B12 deficiency is associated with numerous hallmarks of aging at the cellular and organismal levels. Cellular senescence is characterized by high levels of DNA damage by metabolic abnormalities, increased mitochondrial dysfunction, and disturbance of epigenetic regulation. B12 deficiency could be responsible for or play a crucial part in these disorders. In this review, we focus on a comprehensive analysis of molecular mechanisms through which vitamin B12 influences aging. We review new data about how deficiency in vitamin B12 may accelerate cellular aging. Despite indications that vitamin B12 has an important role in health and healthy aging, knowledge of the influence of vitamin B12 on aging is still limited and requires further research.


Assuntos
Envelhecimento , Inflamação , Deficiência de Vitamina B 12 , Vitamina B 12 , Humanos , Vitamina B 12/metabolismo , Animais , Envelhecimento/metabolismo , Deficiência de Vitamina B 12/metabolismo , Inflamação/metabolismo , Epigênese Genética , Senescência Celular , Mitocôndrias/metabolismo , Dano ao DNA
2.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612897

RESUMO

Cellular survival hinges on a delicate balance between accumulating damages and repair mechanisms. In this intricate equilibrium, oxidants, currently considered physiological molecules, can compromise vital cellular components, ultimately triggering cell death. On the other hand, cells possess countermeasures, such as autophagy, which degrades and recycles damaged molecules and organelles, restoring homeostasis. Lysosomes and their enzymatic arsenal, including cathepsins, play critical roles in this balance, influencing the cell's fate toward either apoptosis and other mechanisms of regulated cell death or autophagy. However, the interplay between reactive oxygen species (ROS) and cathepsins in these life-or-death pathways transcends a simple cause-and-effect relationship. These elements directly and indirectly influence each other's activities, creating a complex web of interactions. This review delves into the inner workings of regulated cell death and autophagy, highlighting the pivotal role of ROS and cathepsins in these pathways and their intricate interplay.


Assuntos
Autofagia , Catepsinas , Espécies Reativas de Oxigênio , Morte Celular , Apoptose
3.
Free Radic Biol Med ; 192: 191-199, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36152916

RESUMO

Selenomethionine (SeMet) randomly replaces methionine (Met) in protein translation. Because of strongly differing redox properties of SeMet and Met, SeMet mis-incorporation may have detrimental effects on protein function, possibly compromising the use of nutritional SeMet supplementation as an anti-oxidant. Studying the functional impact of SeMet in proteins on a cellular level is hampered by the lack of accurate and efficient methods for estimating the SeMet incorporation level in individual viable cells. Here we introduce and apply a method to measure the extent of SeMet incorporation in cellular proteins by utilizing a genetically encoded fluorescent methionine oxidation probe. Supplementation of SeMet in mammalian culture medium resulted in >84% incorporation of SeMet, and SeMet labeling as low as 5% was readily measured. Kinetics and extent of SeMet incorporation on the single-cell level under live-cell imaging conditions provided direct access to protein turn-over kinetics and SeMet redox properties in a cellular context. The method is furthermore suited for experiments utilizing high-throughput fluorescence microplate readers or fluorescence-activated cell sorting (FACS) analysis.


Assuntos
Antioxidantes , Selenometionina , Animais , Antioxidantes/metabolismo , Mamíferos/metabolismo , Metionina/metabolismo , Oxirredução , Proteínas/metabolismo , Selenometionina/metabolismo
4.
Talanta ; 243: 123332, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35276500

RESUMO

Methionine oxidation is a reversible post-translational protein modification, affecting protein function, and implicated in aging and degenerative diseases. The detection of accumulating methionine oxidation in living cells or organisms, however, has not been achieved. Here we introduce a genetically encoded probe for methionine oxidation (GEPMO), based on the super-folder green fluorescent protein (sfGFP), as a specific, versatile, and integrating sensor for methionine oxidation. Placed at amino-acid position 147 in an otherwise methionine-less sfGFP, the oxidation of this specific methionine to methionine sulfoxide results in a ratiometric fluorescence change when excited with ∼400 and ∼470 nm light. The strength and homogeneity of the sensor expression is suited for live-cell imaging as well as fluorescence-activated cell sorting (FACS) experiments using standard laser wavelengths (405/488 nm). Expressed in mammalian cells and also in S. cerevisiae, the sensor protein faithfully reports on the status of methionine oxidation in an integrating manner. Variants targeted to membranes and the mitochondria provide subcellular resolution of methionine oxidation, e.g. reporting on site-specific oxidation by illumination of endogenous protoporphyrin IX.


Assuntos
Metionina , Saccharomyces cerevisiae , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mamíferos/metabolismo , Metionina/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Saccharomyces cerevisiae/metabolismo
5.
Proteins ; 86(10): 1117-1122, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30007037

RESUMO

Sodium channel alpha-toxins from scorpion venom (α-NaTx) inhibit the inactivation of voltage-gated sodium channels. We used solution NMR to investigate the structure of BeM9 toxin from Mesobuthus eupeus scorpion, a prototype α-NaTx classified as an "α-like" toxin due to its wide spectrum of activity on insect and mammalian channels. We identified a new motif that we named "arginine hand," whereby arginine side chain forms several hydrogen bonds with main chain atoms. The arginine hand was found in the "specificity module," a part of the molecule that dictates toxin selectivity; and just single arginine-to-lysine point mutation drastically changed BeM9 selectivity profile.


Assuntos
Arginina/química , Proteínas de Artrópodes/química , Neurotoxinas/química , Venenos de Escorpião/química , Escorpiões/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência
6.
FEBS Lett ; 591(20): 3414-3420, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28889641

RESUMO

Scorpion α-toxins are polypeptides that inhibit voltage-gated sodium channel inactivation. They are divided into mammal, insect and α-like toxins based on their relative activity toward different phyla. Several factors are currently known to influence the selectivity, which are not just particular amino acid residues but also general physical, chemical, and topological properties of toxin structural modules. The objective of this study was to change the selectivity profile of a chosen broadly active α-like toxin, BeM9 from Mesobuthus eupeus, toward mammal-selective. Based on the available information on what determines scorpion α-toxin selectivity, we designed and produced msBeM9, a BeM9 derivative, which was verified to be exclusively active toward mammalian sodium channels and, most importantly, toward the Nav 1.2 isoform expressed in the brain.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.2/química , Neurotoxinas/química , Oócitos/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Venenos de Escorpião/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Insetos/efeitos dos fármacos , Insetos/metabolismo , Camundongos , Modelos Moleculares , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Neurotoxinas/biossíntese , Neurotoxinas/genética , Neurotoxinas/toxicidade , Oócitos/citologia , Oócitos/metabolismo , Ligação Proteica , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/toxicidade , Venenos de Escorpião/biossíntese , Venenos de Escorpião/genética , Venenos de Escorpião/toxicidade , Escorpiões/química , Escorpiões/patogenicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato , Tiorredoxinas/biossíntese , Tiorredoxinas/química , Tiorredoxinas/genética , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...