Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(8): e0255326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34403417

RESUMO

Cassava (Manihot esculenta Crantz.) has been a vital staple and food security crop in Tanzania for several centuries, and it is likely that its resilience will play a key role in mitigating livelihood insecurities arising from climate change. The sector is dominated by smallholder farmers growing traditional landrace varieties. A recent surge in virus diseases and awareness in the commercial potential of cassava has prompted a drive to disseminate improved varieties in the country. These factors however also threaten the existence of landraces and associated farmer knowledge. It is important that the landraces are conserved and utilized as the adaptive gene complexes they harbor can drive breeding for improved varieties that meet agro-ecological adaptation as well as farmer and consumer needs, thereby improving adoption rates. Here we report on cassava germplasm collection missions and documentation of farmer knowledge in seven zones of Tanzania. A total of 277 unique landraces are identified through high-density genotyping. The large number of landraces is attributable to a mixed clonal/sexual reproductive system in which the soil seed bank and incorporation of seedlings plays an important role. A striking divergence in genetic relationships between the coastal regions and western regions is evident and explained by (i) independent introductions of cassava into the country, (ii) adaptation to prevailing agro-ecological conditions and (iii) farmer selections according to the intended use or market demands. The main uses of cassava with different product profiles are evident, including fresh consumption, flour production, dual purpose incorporating both these uses and longer-term food security. Each of these products have different trait requirements. Individual landraces were not widely distributed across the country with limited farmer-to-farmer diffusion with implications for seed systems.


Assuntos
Técnicas de Genotipagem/métodos , Manihot/classificação , Manihot/crescimento & desenvolvimento , Proteínas de Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/virologia , Resistência à Doença , Segurança Alimentar , Manihot/genética , Manihot/virologia , Filogenia , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Banco de Sementes , Tanzânia
2.
Theor Appl Genet ; 130(10): 2069-2090, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707249

RESUMO

KEY MESSAGE: QTL consistent across seasons were detected for resistance to cassava brown streak disease induced root necrosis and foliar symptoms. The CMD2 locus was detected in an East African landrace, and comprised two QTL. Cassava production in Africa is compromised by cassava brown streak disease (CBSD) and cassava mosaic disease (CMD). To reduce costs and increase the precision of resistance breeding, a QTL study was conducted to identify molecular markers linked to resistance against these diseases. A bi-parental F1 mapping population was developed from a cross between the Tanzanian farmer varieties, Namikonga and Albert. A one-step genetic linkage map comprising 943 SNP markers and 18 linkage groups spanning 1776.2 cM was generated. Phenotypic data from 240 F1 progeny were obtained from two disease hotspots in Tanzania, over two successive seasons, 2013 and 2014. Two consistent QTLs linked to resistance to CBSD-induced root necrosis were identified in Namikonga on chromosomes II (qCBSDRNFc2Nm) and XI (qCBSDRNc11Nm) and a putative QTL on chromosome XVIII (qCBSDRNc18Nm). qCBSDRNFc2Nm was identified at Naliendele in both seasons. The same QTL was also associated with CBSD foliar resistance. qCBSDRNc11Nm was identified at Chambezi in both seasons, and was characterized by three peaks, spanning a distance of 253 kb. Twenty-seven genes were identified within this region including two LRR proteins and a signal recognition particle. In addition, two highly significant CMD resistance QTL (qCMDc12.1A and qCMDc12.2A) were detected in Albert, on chromosome 12. Both qCMDc12.1A and qCMDc12.2A lay within the range of markers reported earlier, defining the CMD2 locus. This is the first time that two loci have been identified within the CMD2 QTL, and in germplasm of apparent East African origin. Additional QTLs with minor effects on CBSD and CMD resistance were also identified.


Assuntos
Resistência à Doença/genética , Manihot/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Ligação Genética , Genótipo , Manihot/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Tanzânia
3.
Theor Appl Genet ; 107(6): 1083-93, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12856084

RESUMO

Cassava (Manihot esculenta) is an allogamous, vegetatively propagated, Neotropical crop that is also widely grown in tropical Africa and Southeast Asia. To elucidate genetic diversity and differentiation in the crop's primary and secondary centers of diversity, and the forces shaping them, SSR marker variation was assessed at 67 loci in 283 accessions of cassava landraces from Africa (Tanzania and Nigeria) and the Neotropics (Brazil, Colombia, Peru, Venezuela, Guatemala, Mexico and Argentina). Average gene diversity (i.e., genetic diversity) was high in all countries, with an average heterozygosity of 0.5358 +/- 0.1184. Although the highest was found in Brazilian and Colombian accessions, genetic diversity in Neotropical and African materials is comparable. Despite the low level of differentiation [F(st)(theta) = 0.091 +/- 0.005] found among country samples, sufficient genetic distance (1-proportion of shared alleles) existed between individual genotypes to separate African from Neotropical accessions and to reveal a more pronounced substructure in the African landraces. Forces shaping differences in allele frequency at SSR loci and possibly counterbalancing successive founder effects involve probably spontaneous recombination, as assessed by parent-offspring relationships, and farmer-selection for adaptation.


Assuntos
Marcadores Genéticos , Variação Genética , Manihot/genética , Sequências Repetitivas de Ácido Nucleico , Alelos , Produtos Agrícolas , Manihot/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...