Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(4): 100744, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417630

RESUMO

NF-κB pathway is involved in inflammation; however, recent data shows its role also in cancer development and progression, including metastasis. To understand the role of NF-κB interactome dynamics in cancer, we study the complexity of breast cancer interactome in luminal A breast cancer model and its rearrangement associated with NF-κB modulation. Liquid chromatography-mass spectrometry measurement of 160 size-exclusion chromatography fractions identifies 5460 protein groups. Seven thousand five hundred sixty eight interactions among these proteins have been reconstructed by PrInCE algorithm, of which 2564 have been validated in independent datasets. NF-κB modulation leads to rearrangement of protein complexes involved in NF-κB signaling and immune response, cell cycle regulation, and DNA replication. Central NF-κB transcription regulator RELA co-elutes with interactors of NF-κB activator PRMT5, and these complexes are confirmed by AlphaPulldown prediction. A complementary immunoprecipitation experiment recapitulates RELA interactions with other NF-κB factors, associating NF-κB inhibition with lower binding of NF-κB activators to RELA. This study describes a network of pro-tumorigenic protein interactions and their rearrangement upon NF-κB inhibition with potential therapeutic implications in tumors with high NF-κB activity.


Assuntos
Neoplasias da Mama , NF-kappa B , Mapas de Interação de Proteínas , Fator de Transcrição RelA , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Mapeamento de Interação de Proteínas , Transdução de Sinais , Linhagem Celular Tumoral , Ligação Proteica , Proteína-Arginina N-Metiltransferases/metabolismo , Carcinogênese/metabolismo
2.
J Chem Inf Model ; 61(12): 6000-6011, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34779609

RESUMO

Mismatched base pairs alter the flexibility and intrinsic curvature of DNA. The role of such DNA features is not fully understood in the mismatch repair pathway. MutS/DNA complexes exhibit DNA bending, PHE intercalation, and changes of base-pair parameters near the mismatch. Recently, we have shown that base-pair opening in the absence of MutS can discriminate mismatches from canonical base pairs better than DNA bending. However, DNA bending in the absence of MutS was found to be rather challenging to describe correctly. Here, we present a computational study on the DNA bending of canonical and G/T mismatched DNAs. Five types of geometric parameters covering template-based bending toward the experimental DNA structure, global, and local geometry parameters were employed in biased molecular dynamics in the absence of MutS. None of these parameters showed higher discrimination than the base-pair opening. Only roll could induce a sharply localized bending of DNA as observed in the experimental MutS/DNA structure. Further, we demonstrated that the intercalation of benzene mimicking PHE decreases the energetic cost of DNA bending without any effect on mismatch discrimination.


Assuntos
Pareamento Incorreto de Bases , Proteína MutS de Ligação de DNA com Erro de Pareamento , Pareamento de Bases , DNA/química , Reparo do DNA , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo
3.
J Org Chem ; 86(6): 4483-4496, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33648337

RESUMO

Multitopic supramolecular guests with finely tuned affinities toward widely explored cucurbit[n]urils (CBs) and cyclodextrins (CDs) have been recently designed and tested as functional components of advanced supramolecular systems. We employed various spacers between the adamantane cage and a cationic moiety as a tool for tuning the binding strength toward CB7 to prepare a set of model guests with KCB7 and Kß-CD values of (0.6-5.0) × 1010 M-1 and (0.6-2.6) × 106 M-1, respectively. These accessible adamantylphenyl-based binding motifs open a way toward supramolecular components with an outstanding affinity toward ß-cyclodextrin. 1H NMR experiments performed in 30% CaCl2/D2O at 273 K along with molecular dynamics simulations allowed us to identify two arrangements of the guest@ß-CD complexes. The approach, joining experimental and theoretical methods, provided a better understanding of the structure of cyclodextrin complexes and related molecular recognition, which is highly important for the rational design of drug delivery systems, molecular sensors and switches.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Água
4.
Nucleic Acids Res ; 48(20): 11322-11334, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080020

RESUMO

Mismatch repair is a highly conserved cellular pathway responsible for repairing mismatched dsDNA. Errors are detected by the MutS enzyme, which most likely senses altered mechanical property of damaged dsDNA rather than a specific molecular pattern. While the curved shape of dsDNA in crystallographic MutS/DNA structures suggests the role of DNA bending, the theoretical support is not fully convincing. Here, we present a computational study focused on a base-pair opening into the minor groove, a specific base-pair motion observed upon interaction with MutS. Propensities for the opening were evaluated in terms of two base-pair parameters: Opening and Shear. We tested all possible base pairs in anti/anti, anti/syn and syn/anti orientations and found clear discrimination between mismatches and canonical base-pairs only for the opening into the minor groove. Besides, the discrimination gap was also confirmed in hotspot and coldspot sequences, indicating that the opening could play a more significant role in the mismatch recognition than previously recognized. Our findings can be helpful for a better understanding of sequence-dependent mutability. Further, detailed structural characterization of mismatches can serve for designing anti-cancer drugs targeting mismatched base pairs.


Assuntos
Pareamento Incorreto de Bases , Reparo de Erro de Pareamento de DNA , DNA/química , Simulação de Dinâmica Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Pareamento de Bases , Biologia Computacional , DNA/metabolismo , Ligação de Hidrogênio , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Termodinâmica
5.
Chemphyschem ; 21(18): 2084-2095, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32672383

RESUMO

Stilbene derivatives are well-recognised substructures of molecular switches based on photochemically and/or thermally induced (E)/(Z) isomerisation. We combined a stilbene motif with two benzimidazolium arms to prepare new sorts of supramolecular building blocks and examined their binding properties towards cucurbit[n]urils (n=7, 8) and cyclodextrins (ß-CD, γ-CD) in water. Based on the 1 H NMR data and molecular dynamics simulations, we found that two distinct complexes with different stoichiometry, i. e., guest@ß-CD and guest@ß-CD2 , coexist in equilibrium in a water solution of the (Z)-stilbene-based guests. We also demonstrated that the bis(benzimidazolio)stilbene guests can be transformed from the (E) into the (Z) form via UV irradiation and back via thermal treatment in DMSO.

6.
Supramol Chem ; 32(9): 479-494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33731981

RESUMO

We report the synthesis of the conformationally mobile S-shaped glycoluril pentamer building block 3a and two new acyclic CB[n]-type receptors P1 and P2. P1 (9 mM) and P2 (11 mM) have moderate aqueous solubility but their host•guest complexes are poorly soluble. Host P1 does not undergo intermolecular self-association whereas P2 does (Ks = 189±27 M-1). 1H NMR titrations show that P1 and P2 are poor hosts toward hydrophobic (di)cations 6 - 11 (P1: Ka = 375-1400 M-1; P2: Ka = 1950-19800 M-1) compared to Tet1 and Tet2 (Tet1: Ka = 3.09 × 106 to 4.69 × 108 M-1; Tet2: Ka = 4.59 × 108 to 1.30 × 1010 M-1). Molecular modelling shows that P1 and P2 exist as a mixture of three different conformers due to the two S-shaped methylene bridged glycoluril dimer subunits that each possess two different conformations. The lowest energy conformers of P1 and P2 do not feature a well-defined central cavity. In the presence of guests, P2 adapts its conformation to form 1:1 P2•guest complexes; the binding free energy pays the energetic price of conformer selection. This energetically unfavorable conformer selection results in significantly decreased Ka values of P1 and P2 compared to Tet1 and Tet2.

7.
DNA Res ; 26(4): 341-352, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31230075

RESUMO

Mutations can be induced by environmental factors but also arise spontaneously during DNA replication or due to deamination of methylated cytosines at CpG dinucleotides. Sites where mutations occur with higher frequency than would be expected by chance are termed hotspots while sites that contain mutations rarely are termed coldspots. Mutations are permanently scanned and repaired by repair systems. Among them, the mismatch repair targets base pair mismatches, which are discriminated from canonical base pairs by probing altered elasticity of DNA. Using biased molecular dynamics simulations, we investigated the elasticity of coldspots and hotspots motifs detected in human genes associated with inherited disorders, and also of motifs with Czech population hotspots and de novo mutations. Main attention was paid to mutations leading to G/T and A+/C pairs. We observed that hotspots without CpG/CpHpG sequences are less flexible than coldspots, which indicates that flexible sequences are more effectively repaired. In contrary, hotspots with CpG/CpHpG sequences exhibited increased flexibility as coldspots. Their mutability is more likely related to spontaneous deamination of methylated cytosines leading to C > T mutations, which are primarily targeted by base excision repair. We corroborated conclusions based on computer simulations by measuring melting curves of hotspots and coldspots containing G/T mismatch.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Mutação , Motivos de Nucleotídeos , Ilhas de CpG , DNA/genética , Humanos
8.
J Mol Model ; 24(1): 22, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29264670

RESUMO

BsoBI is a type II restriction endonuclease belonging to the EcoRI family. There is only one previously published X-ray structure for this endonuclease: it shows a homodimer of BsoBI completely encircling DNA in a tunnel. In this work, molecular dynamics simulations were employed to elucidate possible ways in which DNA is loaded into this complex prior to its cleavage. We found that the dimer does not open spontaneously when DNA is removed from the complex on the timescale of our simulations (~ 0.5 µs). A biased simulation had to be used to facilitate the opening, which revealed a possible way for the two catalytic domains to separate. The α-helices connecting the catalytic and helical domains were found to act as a hinge during the separation. In addition, we found that the opening of the BsoBI dimer was influenced by the type of counterions present in the environment. A reference simulation of the BsoBI/DNA complex further showed spontaneous reorganization of the active sites due to the binding of solvent ions, which led to an active-site structure consistent with other experimental structures of type II restriction endonucleases determined in the presence of metal ions.


Assuntos
DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Simulação de Dinâmica Molecular , Domínio Catalítico , Biologia Computacional , Conformação Proteica
9.
PLoS One ; 12(8): e0182377, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28767725

RESUMO

Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs) rarely associated with mutations (coldspots) and frequently associated with mutations (hotspots) exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of CpG dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a G/T mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.


Assuntos
DNA/química , DNA/genética , Mutação em Linhagem Germinativa , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fator VIII/genética , Predisposição Genética para Doença , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Receptores de LDL/genética
10.
J Am Chem Soc ; 139(7): 2597-2603, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28222609

RESUMO

Methyl viologen hexafluorophosphate (MV2+·2PF6-) and dodecamethylbambus[6]uril (BU6) form crystals in which the layers of viologen dications alternate with those of a 1:2 supramolecular complex of BU6 and PF6-. This arrangement allows for a one-electron reduction of MV2+ ions upon UV irradiation to form MV+• radical cations within the crystal structure with half-lives of several hours in air. The mechanism of this photoinduced electron transfer in the solid state and the origin of the long-lived charge-separated state were studied by steady-state and transient spectroscopies, cyclic voltammetry, and electron paramagnetic resonance spectroscopy. Our experiments are supported by quantum-chemical calculations showing that BU6 acts as a reductant. In addition, analogous photochemical behavior is also demonstrated on other MV2+/BU6 crystals containing either BF4- or Br- counterions.

11.
J Chromatogr A ; 1469: 88-95, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27692640

RESUMO

We studied sequence-dependent retention properties of synthetic 5'-terminal phosphate absent trinucleotides containing adenine, guanine and thymine through reversed-phase liquid chromatography (RPLC) and QSRR modelling. We investigated the influence of separation conditions, namely mobile phase composition (ion interaction agent content, pH and organic constituent content), on sequence-dependent separation by means of ion-interaction RPLC (II-RPLC) using two types of models: experimental design-artificial neural networks (ED-ANN), and linear regression based on molecular dynamics data. The aim was to determine those properties of the above-mentioned analytes responsible for the retention dependence of the sequence. Our results show that there is a deterministic relation between sequence and II-RPLC retention properties of the studied trinucleotides. Further, we can conclude that the higher the content of ion-interaction agent in the mobile phase, the more prominent these properties are. We also show that if we approximate the polar component of solvation energy in QSRR by the electrostatic work in transferring molecules from vacuum to water, and the non-polar component by the solvent accessible surface area, these parameters best describe the retention properties of trinucleotides. There are some exceptions to this finding, namely sequences 5'-NAN-3', 5'-ANN-3', 5'-TGN-3', 5'-NTA-3'and 5'-NGA-3' (N stands for generic nucleotide). Their role is still unknown, but since linear regression including these specific constellations showed a higher observable variance coverage than the model with only the basic descriptors, we may assume that solvent-analyte interactions are responsible for the exceptional behaviour of 5'-NAN-3' & 5'-ANN-3' trinucleotides and some intramolecular interactions of neighbouring nucleobases for 5'-TGN-3', 5'-NTA-3'and 5'-NGA-3' trinucleotides.


Assuntos
Oligonucleotídeos/isolamento & purificação , Adenina/análogos & derivados , Adenina/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Guanina/análogos & derivados , Guanina/isolamento & purificação , Simulação de Dinâmica Molecular , Redes Neurais de Computação , Relação Quantitativa Estrutura-Atividade , Solventes , Eletricidade Estática , Timina/análogos & derivados , Timina/isolamento & purificação , Água
12.
J Org Chem ; 81(20): 9595-9604, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27662070

RESUMO

Imidazolium-based guests containing two distinct binding epitopes are capable of binding ß-cyclodextrin and cucurbit[6/7]uril (CB) simultaneously to form heteroternary 1:1:1 inclusion complexes. In the final configuration, the hosts occupy binding sites disfavored in the binary complexes because of the chemically induced reorganization of the intermediate 1:1 aggregate. In addition, the reported guests are capable of binding two CBs to form either 1:2 or 1:1:1 ternary assemblies despite consisting of a single cationic moiety. Whereas the adamantane site binds CB solely via hydrophobic interactions, the CB unit at the butyl site is stabilized by a combination of hydrophobic and ion-dipole interactions.

13.
J Org Chem ; 81(14): 6075-80, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27308961

RESUMO

Cucurbiturils are the most potent artificial receptors known for many organic molecules in water. However, little is known about their supramolecular chemistry in organic solvents. Here we present a new cucurbituril derivative, 1, and investigate its supramolecular properties in methanol. The macrocycle resembles a five-membered cucurbituril in which four glycoluril units are replaced with propanediurea. Macrocycle 1 can bind to one cation such as potassium or anilinium via each of its opposed portals. The stability of these complexes in methanol at nanomolar concentrations exceeds that of complexes between metal cations and crown ethers. Moreover, macrocycle 1 forms a self-assembled tetrameric aggregate in the solid state and in methanol. The tetramer is stabilized by the addition of up to 1 equiv of a cation but is fully disassembled in the presence of 2 equiv of the cation. Cations can thus be used to tune the aggregation of 1 in solution.

14.
J Phys Chem B ; 119(12): 4371-81, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25731954

RESUMO

The inverting O-GlcNAc glycosyltransferase (OGT) is an important post-translation enzyme, which catalyzes the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine (UDP-GlcNAc) to the hydroxyl group of the Ser/Thr of cytoplasmic, nuclear, and mitochondrial proteins. In the past, three different catalytic bases were proposed for the reaction: His498, α-phosphate, and Asp554. In this study, we used hybrid quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello molecular dynamics to investigate reaction paths using α-phosphate and Asp554 as the catalytic bases. The string method was used to calculate the free-energy reaction profiles of the tested mechanisms. During the investigations, an additional mechanism was observed. In this mechanism, a proton is transferred to α-phosphate via a water molecule. Our calculations show that the mechanism with α-phosphate acting as the base is favorable. This reaction has a rate-limiting free-energy barrier of 23.5 kcal/mol, whereas reactions utilizing Asp554 and water-assisted α-phosphate have barriers of 41.7 and 40.9 kcal/mol, respectively. Our simulations provide a new insight into the catalysis of OGT and may thus guide rational drug design of transition-state analogue inhibitors with potential therapeutic use.


Assuntos
N-Acetilglucosaminiltransferases/química , Catálise , Humanos , Simulação de Dinâmica Molecular , Prótons , Teoria Quântica , Água/química
15.
J Mol Model ; 21(4): 70, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25750018

RESUMO

Hyperphenylalaninemia (HPA) is one of the most common metabolic disorders. HPA, which is transmitted by an autosomal recessive mode of inheritance, is caused by mutations of the phenylalanine hydroxylase gene. Most mutations are missense and lead to reduced protein stability and/or impaired catalytic function. The impact of such mutations varies, ranging from classical phenylketonuria (PKU), mild PKU, to non-PKU HPA phenotypes. Despite the fact that HPA is a monogenic disease, clinical data show that one PKU genotype can be associated with more in vivo phenotypes, which indicates the role of other (still unknown) factors. To better understand the phenotype-genotype relationships, we analyzed computationally the impact of missense mutations in homozygotes stored in the BIOPKU database. A total of 34 selected homozygous genotypes was divided into two main groups according to their phenotypes: (A) genotypes leading to non-PKU HPA or combined phenotype non-PKU HPA/mild PKU and (B) genotypes leading to classical PKU, mild PKU or combined phenotype mild PKU/classical PKU. Combining in silico analysis and molecular dynamics simulations (in total 3 µs) we described the structural impact of the mutations, which allowed us to separate 32 out of 34 mutations between groups A and B. Testing the simulation conditions revealed that the outcome of mutant simulations can be modulated by the ionic strength. We also employed programs SNPs3D, Polyphen-2, and SIFT but based on the predictions performed we were not able to discriminate mutations with mild and severe PKU phenotypes.


Assuntos
Mutação de Sentido Incorreto/genética , Fenilalanina Hidroxilase/química , Fenilcetonúrias/genética , Simulação por Computador , Genótipo , Humanos , Simulação de Dinâmica Molecular , Fenótipo , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/patologia , Conformação Proteica , Relação Estrutura-Atividade
16.
Org Lett ; 17(4): 1022-5, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25654606

RESUMO

A novel macrocycle, decamethylpressocucurbit[5]uril (Me10prCB[5]), was synthesized by acid-catalyzed condensation of propanediurea and paraformaldehyde. This macrocycle binds methane with higher affinity than cucurbit[5]uril and its permethylated derivative.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/síntese química , Imidazóis/química , Imidazóis/síntese química , Compostos Macrocíclicos/química , Compostos Macrocíclicos/síntese química , Catálise , Estrutura Molecular
17.
Phys Chem Chem Phys ; 16(29): 15241-8, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24939211

RESUMO

Guanine DNA quadruplexes are interesting and important biological objects because they represent potential targets for regulatory drugs. Their use as building blocks for biomaterial applications is also being investigated. This contribution reports the in silico design of artificial building blocks derived from xanthine. Methods of quantum chemistry were used to evaluate the properties of xanthine structures relative to those containing guanine, the natural reference used. Tailoring the xanthine core showed that the base stacking and the ion coordination were significantly enhanced in the designed systems, while the ion-transport properties were not affected. Our study suggests that the 9-deaza-8-haloxanthine bases (where the halogen is fluorine or chlorine) are highly promising candidates for the development of artificial quadruplexes and quadruplex-active ligands.


Assuntos
Cloro/química , Flúor/química , Quadruplex G , Guanina/química , Nanoestruturas/química , Teoria Quântica , Xantina/química
18.
J Comput Chem ; 34(22): 1890-8, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23703381

RESUMO

The isotropic (129)Xe nuclear magnetic resonance (NMR) chemical shift (CS) in Xe@C60 dissolved in liquid benzene was calculated by piecewise approximation to faithfully simulate the experimental conditions and to evaluate the role of different physical factors influencing the (129)Xe NMR CS. The (129)Xe shielding constant was obtained by averaging the (129)Xe nuclear magnetic shieldings calculated for snapshots obtained from the molecular dynamics trajectory of the Xe@C60 system embedded in a periodic box of benzene molecules. Relativistic corrections were added at the Breit-Pauli perturbation theory (BPPT) level, included the solvent, and were dynamically averaged. It is demonstrated that the contribution of internal dynamics of the Xe@C60 system represents about 8% of the total nonrelativistic NMR CS, whereas the effects of dynamical solvent add another 8%. The dynamically averaged relativistic effects contribute by 9% to the total calculated (129)Xe NMR CS. The final theoretical value of 172.7 ppm corresponds well to the experimental (129)Xe CS of 179.2 ppm and lies within the estimated errors of the model. The presented computational protocol serves as a prototype for calculations of (129)Xe NMR parameters in different Xe atom guest-host systems.


Assuntos
Benzeno/química , Fulerenos/química , Simulação de Dinâmica Molecular , Isótopos de Xenônio/química , Xenônio/química , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência , Solventes/química
19.
Chemistry ; 18(43): 13633-7, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22969015

RESUMO

Adamantylated bisimidazolium cations exhibit a distinct fragmentation pathway in contrast to their cucurbit[7]uril (CB7) complexes. The observed alternative fragmentation of the guest molecule in a complex clearly correlates to the supposed sterically hindered or allowed slippage of the macrocycle over the axel molecule.

20.
J Chem Theory Comput ; 8(1): 335-347, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22712001

RESUMO

Folded RNA molecules are shaped by an astonishing variety of highly conserved noncanonical molecular interactions and backbone topologies. The dinucleotide platform is a widespread recurrent RNA modular building submotif formed by the side-by-side pairing of bases from two consecutive nucleotides within a single strand, with highly specific sequence preferences. This unique arrangement of bases is cemented by an intricate network of noncanonical hydrogen bonds and facilitated by a distinctive backbone topology. The present study investigates the gas-phase intrinsic stabilities of the three most common RNA dinucleotide platforms - 5'-GpU-3', ApA, and UpC - via state-of-the-art quantum-chemical (QM) techniques. The mean stability of base-base interactions decreases with sequence in the order GpU > ApA > UpC. Bader's atoms-in-molecules analysis reveals that the N2(G)…O4(U) hydrogen bond of the GpU platform is stronger than the corresponding hydrogen bonds in the other two platforms. The mixed-pucker sugar-phosphate backbone conformation found in most GpU platforms, in which the 5'-ribose sugar (G) is in the C2'-endo form and the 3'-sugar (U) in the C3'-endo form, is intrinsically more stable than the standard A-RNA backbone arrangement, partially as a result of a favorable O2'…O2P intra-platform interaction. Our results thus validate the hypothesis of Lu et al. (Lu Xiang-Jun, et al. Nucleic Acids Res. 2010, 38, 4868-4876), that the superior stability of GpU platforms is partially mediated by the strong O2'…O2P hydrogen bond. In contrast, ApA and especially UpC platform-compatible backbone conformations are rather diverse and do not display any characteristic structural features. The average stabilities of ApA and UpC derived backbone conformers are also lower than those of GpU platforms. Thus, the observed structural and evolutionary patterns of the dinucleotide platforms can be accounted for, to a large extent, by their intrinsic properties as described by modern QM calculations. In contrast, we show that the dinucleotide platform is not properly described in the course of atomistic explicit-solvent simulations. Our work also gives methodological insights into QM calculations of experimental RNA backbone geometries. Such calculations are inherently complicated by rather large data and refinement uncertainties in the available RNA experimental structures, which often preclude reliable energy computations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...