Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 45(3): 170-182, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37772443

RESUMO

Prediction of catalytic reaction efficiency is one of the most intriguing and challenging applications of machine learning (ML) algorithms in chemistry. In this study, we demonstrated a strategy for utilizing ML protocols applied to Quantum Theory of Atoms In Molecules (QTAIM) parameters to predict the ability of the A17 L47K catalytic antibody to covalently capture organophosphate pesticides. We found that the novel "composite" DFT functional B97-3c could be effectively employed for fast and accurate initial geometry optimization, aligning well with the input dataset creation. QTAIM descriptors proved to be well-established in describing the examined dataset using density-based and hierarchical clustering algorithms. The obtained clusters exhibited correlations with the chemical classes of the input compounds. The precise physical interpretation of the QTAIM properties simplifies the explanation of feature impact for both supervised and unsupervised ML protocols. It also enables acceleration in the search for entries with desired properties within large databases. Furthermore, our findings indicated that Ridge Regression with Laplacian kernel and CatBoost Regressor algorithms demonstrated suitable performance in handling small datasets with non-trivial dependencies. They were able to predict the actual reaction barrier values with a high level of accuracy. Additionally, the CatBoost Classifier proved reliable in discriminating between "active" and "inactive" compounds.

2.
Front Plant Sci ; 12: 642591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025691

RESUMO

The difference in symbiotic specificity between peas of Afghanistan and European phenotypes was investigated using molecular modeling. Considering segregating amino acid polymorphism, we examined interactions of pea LykX-Sym10 receptor heterodimers with four forms of Nodulation factor (NF) that varied in natural decorations (acetylation and length of the glucosamine chain). First, we showed the stability of the LykX-Sym10 dimer during molecular dynamics (MD) in solvent and in the presence of a membrane. Then, four NFs were separately docked to one European and two Afghanistan dimers, and the results of these interactions were in line with corresponding pea symbiotic phenotypes. The European variant of the LykX-Sym10 dimer effectively interacts with both acetylated and non-acetylated forms of NF, while the Afghanistan variants successfully interact with the acetylated form only. We additionally demonstrated that the length of the NF glucosamine chain contributes to controlling the effectiveness of the symbiotic interaction. The obtained results support a recent hypothesis that the LykX gene is a suitable candidate for the unidentified Sym2 allele, the determinant of pea specificity toward Rhizobium leguminosarum bv. viciae strains producing NFs with or without an acetylation decoration. The developed modeling methodology demonstrated its power in multiple searches for genetic determinants, when experimental detection of such determinants has proven extremely difficult.

3.
ChemCatChem ; 12(3): 795-802, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32140181

RESUMO

Optimization and execution of chemical reactions are to a large extend based on experience and chemical intuition of a chemist. The chemical intuition is rooted in the phenomenological Le Chatelier's principle that teaches us how to shift equilibrium by manipulating the reaction conditions. To access the underlying thermodynamic parameters and their condition-dependencies from the first principles is a challenge. Here, we present a theoretical approach to model non-standard free energies for a complex catalytic CO2 hydrogenation system under operando conditions and identify the condition spaces where catalyst deactivation can potentially be suppressed. Investigation of the non-standard reaction free energy dependencies allows rationalizing the experimentally observed activity patterns and provides a practical approach to optimization of the reaction paths in complex multicomponent reactive catalytic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...