Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genomics ; 113(4): 1952-1961, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862185

RESUMO

BACKGROUND: Plague is a highly dangerous vector-borne infectious disease that has left a significant mark on history of humankind. There are 13 natural plague foci in the Caucasus, located on the territory of the Russian Federation, Azerbaijan, Armenia and Georgia. We performed whole-genome sequencing of Y. pestis strains, isolated in the natural foci of the Caucasus and Transcaucasia. Using the data of whole-genome SNP analysis and Bayesian phylogeny methods, we carried out an evolutionary-phylogeographic analysis of modern population of the plague pathogen in order to determine the phylogenetic relationships of Y. pestis strains from the Caucasus with the strains from other countries. RESULTS: We used 345 Y. pestis genomes to construct a global evolutionary phylogenetic reconstruction of species based on whole-genome SNP analysis. The genomes of 16 isolates were sequenced in this study, the remaining 329 genomes were obtained from the GenBank database. Analysis of the core genome revealed 3315 SNPs that allow differentiation of strains. The evolutionary phylogeographic analysis showed that the studied Y. pestis strains belong to the genetic lineages 0.PE2, 2.MED0, and 2.MED1. It was shown that the Y. pestis strains isolated on the territory of the East Caucasian high-mountain, the Transcaucasian high-mountain and the Priaraksinsky low-mountain plague foci belong to the most ancient of all existing genetic lineages - 0.PE2. CONCLUSIONS: On the basis of the whole-genome SNP analysis of 345 Y. pestis strains, we describe the modern population structure of the plague pathogen and specify the place of the strains isolated in the natural foci of the Caucasus and Transcaucasia in the structure of the global population of Y. pestis. As a result of the retrospective evolutionary-phylogeographic analysis of the current population of the pathogen, we determined the probable time frame of the divergence of the genetic lineages of Y. pestis, as well as suggested the possible paths of the historical spread of the plague pathogen.


Assuntos
Peste , Yersinia pestis , Teorema de Bayes , Genoma Bacteriano , Humanos , Filogenia , Peste/epidemiologia , Peste/genética , Estudos Retrospectivos , Yersinia pestis/genética
2.
Mol Phylogenet Evol ; 159: 107116, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33609703

RESUMO

Bacillus anthracis is a pathogenic bacterium, which causes anthrax disease. The ability of this bacterium to form spores, which can be preserved in soil for decades and cause outbreaks later on, makes this pathogen a serious problem for veterinary and health services of many countries. Siberia is one of the most anthrax-influenced regions of Russia. In this research we report on the results of genotyping based on whole genome SNP analysis of 15 strains, isolated on the territory of Eastern Siberia and the Far East in 1956-2018. In this research, we sequenced 15 genomes of B. anthracis strains isolated from infected humans and animals, and from soil samples from the territory of Eastern Siberia and the Far East in the period from 1956 to 2018. We used genomic sequences obtained in this study and 219 B. anthracis genomes available in the international GenBank database to perform a comparative analysis. As a result we detected 6400 chromosomal SNPs which allowed to differentiate the studied strains. We built phylogenetic reconstruction of the global B. anthracis population based on the detected SNPs using the Maximum Likelihood Method and described genetic diversity of the strains isolated on the territory of Eastern Siberia and the Far East. Strains, isolated on this territory from 1956 to 2018 belong to 5 different genetic groups: "Ames", "STI", "Tsiankovskii", "Siberia" and "Asia". The greatest diversity of the strains is registered for two regions of the southern part of Eastern Siberia - Tyva and Buryatia. This research expands current understanding of genetic diversity of B. anthracis strains circulating on the territory of Russia.


Assuntos
Bacillus anthracis/classificação , Genoma Bacteriano , Filogenia , Animais , Antraz/microbiologia , Bacillus anthracis/genética , Bacillus anthracis/isolamento & purificação , Ásia Oriental , Genômica , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Sibéria , Microbiologia do Solo
3.
BMC Genomics ; 20(1): 692, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477029

RESUMO

BACKGROUND: Anthrax is a zoonotic disease caused by the gram-positive bacterium Bacillus anthracis. The most anthrax-endemic regions of Russia are Siberia and North Caucasus. Previously, genotyping of Russian B.anthracis isolates was carried out using canSNP and MLVA data; these methods yield lower resolution results compared to whole genome SNP analysis (wgSNP). In this research, we have used wgSNP method for genotyping of 10 B.anthracis isolates, obtained during 1961-2016 in Russia on territory of Western Siberia. RESULTS: We have analyzed 185 B.anthracis genomes available in GenBank database and genomes of 10 isolates obtained in this study to determine the place of Russian isolates in the global phylogeny of B.anthracis. For the studied genomes we have detected 7203 SNPs, which were used for building a phylogenetic reconstruction with Maximum Likelihood Method. Results of the phylogenetic analysis indicate that Russian strains belong to three different genetic groups. Three strains belong to genetic group "Ames", two strains - to "STI" group. Five strains belong to the main genetic line B, and four of them form a subcluster, described for the first time, which we have named "Siberia". CONCLUSIONS: In this study, the data on genetic diversity of B.anthracis strains on the territory of Western Siberia is presented for the first time. As a result of complex phylogenetic analysis, the place of these isolates was determined in the global phylogenetic structure of the B.anthracis population. We describe a new cluster in the main genetic line B for the first time.


Assuntos
Bacillus anthracis/genética , Filogenia , Bacillus anthracis/classificação , Família Multigênica , Polimorfismo de Nucleotídeo Único , Sibéria , Sequenciamento Completo do Genoma
4.
BMC Microbiol ; 19(1): 165, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315564

RESUMO

BACKGROUND: Anthrax is a zoonotic disease caused by the Gram-positive bacterium Bacillus anthracis. In Russia, there are more than 35 thousand anthrax stationary unfavourable sites. At the same time, there is very little published information about the isolates of B. anthracis from the territory of Russia. In this study, we report the use of whole genome sequencing (WGS) and bioinformatics analysis to characterize B. anthracis 81/1 strain isolated in Russia in 1969 from a person during an outbreak of the disease in the Stavropol region. RESULTS: We used 232 B. anthracis genomes, which are currently available in the GenBank database, to determine the place of the Russian isolate in the global phylogeny of B. anthracis. The studied strain was characterized by PCR-based genetic methods, such as Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA), canonical single nucleotide polymorphisms (canSNP), as well as the method of full-genomic analysis of nucleotide polymorphisms (wgSNP). The results indicate that the Russian B. anthracis 81/1 strain belongs to Trans-Eurasion (TEA) group, the most representative in the world. CONCLUSIONS: In this study, the full genomic sequence of virulent B. anthracis strain from Russia was characterized for the first time. As a result of complex phylogenetic analysis, the place of this isolate was determined in the global phylogenetic structure of the B. anthracis population, expanding our knowledge of anthrax phylogeography in Russia.


Assuntos
Bacillus anthracis/genética , Genoma Bacteriano , Filogeografia , Antraz/epidemiologia , Antraz/microbiologia , Genótipo , Humanos , Repetições Minissatélites , Epidemiologia Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Federação Russa , Sequenciamento Completo do Genoma
5.
BMC Genomics ; 19(1): 353, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747573

RESUMO

BACKGROUND: Brucellosis is a bacterial zoonotic disease. Annually in the world more than 500,000 new cases of brucellosis in humans are registered. In this study, we propose an evolutionary model of the historical distribution of B. melitensis based on the full-genomic SNP analysis of 98 strains. RESULTS: We performed an analysis of the SNP of the complete genomes of 98 B. melitensis strains isolated in different geographical regions of the world to obtain relevant information on the population structure, genetic diversity and the evolution history of the species. Using genomic sequences of 21 strains of B. melitensis isolated in Russia and WGS data from the NCBI database, it was possible to identify five main genotypes and 13 species genotypes for analysis. Data analysis based on the Bayesian Phylogenetics and Phylogeography method allowed to determine the regions of geographical origin and the expected pathways of distribution of the main lines (genotypes and subgenotypes) of the pathogen. CONCLUSIONS: Within the framework of our study, the model of global evolution and phylogeography of B. melitensis strains isolated in various regions of the planet was proposed for the first time. The sets of unique specific SNPs described in our study, for all identified genotypes and subgenotypes, can be used to develop new bacterial typing and identification systems for B. melitensis.


Assuntos
Brucella melitensis/genética , Evolução Molecular , Genes Bacterianos , Filogenia , Técnicas de Tipagem Bacteriana , Teorema de Bayes , Brucella melitensis/classificação , Genótipo , Filogeografia , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
6.
Infect Genet Evol ; 44: 471-478, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480918

RESUMO

Cholera is a water-borne, severe enteric infection essentially caused by toxigenic strains of Vibrio cholera O1 and O139 serogroups. An outbreak of cholera was registered during May-July 2011 in Mariupol, Ukraine, with 33 cholera cases and 25 carriers of cholera. Following this outbreak, the toxigenic strain of V. cholerae 2011EL-301 was isolated from seawater in the recreation area of Taganrog city on the territory of Russia. The aim of our study was to understand genomic features of Mariupol isolates as well as to evaluate hypothesis about possible interconnection between the outbreak of cholera in Mariupol and the single case of isolation of V. cholerae from the Sea of Azov in Russia. Mariupol isolates were phenotypically characterized and subsequently subjected to whole genome sequencing procedure. Phylogenetic analysis based on high-quality SNPs of V. cholera O1 El Tor isolates of the 7th pandemic clade from different regions showed that clinical and environmental isolates from Mariupol outbreak were attributable to a unique phylogenetic clade within wave 3 of V. cholera O1 El Tor isolates and characterized by six clade-specific SNPs. Whereas Taganrog isolate belonged to distantly related clade which allows us to reject the hypothesis of transmission the outbreak strain of V. cholerae O1 from Ukraine to Russia in 2011. Mariupol isolates shared a common ancestor with Haiti\Nepal-4\India clade indicating that outbreak progenitor strain most likely originated in the South Asia region and later was introduced to Ukraine. Moreover, genomic data both based on hqSNPs and similarity of virulence-associated mobile genomic elements of Mariupol isolates suggests that environmental and clinical isolates are a part of joint outbreak which confirms the role of contaminated domestic sewage, as an element of the complex chain of infection spread during cholera outbreak. In general, the genome-wide comparative analysis of both genes and genomic regions of epidemiological importance indicates accessory of this isolates to 'new' clone of toxigenic multiple drug resistance atypical variant of V. cholerae O1 El Tor.


Assuntos
Cólera/epidemiologia , Cólera/microbiologia , Genoma Bacteriano , Genômica , Vibrio cholerae O1/classificação , Vibrio cholerae O1/genética , Antibacterianos/farmacologia , Cólera/história , Surtos de Doenças , Resistencia a Medicamentos Antineoplásicos , Evolução Molecular , Ilhas Genômicas , Genômica/métodos , História do Século XXI , Humanos , Testes de Sensibilidade Microbiana , Filogenia , Ucrânia/epidemiologia , Vibrio cholerae O1/efeitos dos fármacos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...