Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37173954

RESUMO

Myelodysplastic syndromes (MDS) are common malignant disorders with a poor prognosis. It is necessary to search for new rapid diagnostic methods to detect MDS patients with cytogenetic changes. The aim of the study was to assess new hematological neutrophil- and monocyte- related parameters I then bone marrow of MDS patient with and without cytogenetic changes. A total of 45 patients with MDS, including 17 patients with cytogenetic changes, were examined. The study was conducted using the Sysmex XN-Series hematological analyzer. New neutrophil and monocyte parameters, such as immature granulocytes (IG), neutrophil reactivity intensity (NEUT-RI), neutrophil granularity intensity (NEUT-GI), neutrophil size (NE-FSC) and neutrophil/monocyte data relating to granularity, activity and volume (NE-WX/MO-WX, NE-WY/MO-WY, NE-WZ/MO-WZ, MO-X, MO-Y, MO-Z) were evaluated. We observed higher median proportions of NE-WX, NE-WY, NE-WZ, and IG counts in MDS patients with cytogenetic changes than in patients without cytogenetic changes. The NE-FSC parameter was lower in MDS patients with cytogenetic changes than in patients without cytogenetic changes. The combination of new neutrophil parameters was found to be a new successful approach in distinguishing MDS patients with cytogenetic changes from patients without cytogenetic changes. It appears that there may be unique neutrophil parameter signatures associated with an underlying mutation.

2.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293047

RESUMO

Boron cluster-conjugated antisense oligonucleotides (B-ASOs) have already been developed as therapeutic agents with "two faces", namely as potential antisense inhibitors of gene expression and as boron carriers for boron neutron capture therapy (BNCT). The previously observed high antisense activity of some B-ASOs targeting the epidermal growth factor receptor (EGFR) could not be rationally assigned to the positioning of the boron cluster unit: 1,2-dicarba-closo-dodecaborane (0), [(3,3'-Iron-1,2,1',2'-dicarbollide) (1-), FESAN], and dodecaborate (2-) in the ASO chain and its structure or charge. For further understanding of this observation, we performed systematic studies on the efficiency of RNase H against a series of B-ASOs models. The results of kinetic analysis showed that pyrimidine-enriched B-ASO oligomers activated RNase H more efficiently than non-modified ASO. The presence of a single FESAN unit at a specific position of the B-ASO increased the kinetics of enzymatic hydrolysis of complementary RNA more than 30-fold compared with unmodified duplex ASO/RNA. Moreover, the rate of RNA hydrolysis enhanced with the increase in the negative charge of the boron cluster in the B-ASO chain. In conclusion, a "smart" strategy using ASOs conjugated with boron clusters is a milestone for the development of more efficient antisense therapeutic nucleic acids as inhibitors of gene expression.


Assuntos
Boro , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/farmacologia , Boro/metabolismo , Cinética , RNA Complementar , Ribonuclease H/genética , Ribonuclease H/metabolismo , Inativação Gênica , Oligonucleotídeos , Receptores ErbB/metabolismo , Pirimidinas , Ferro/metabolismo
3.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887319

RESUMO

The 5-substituted 2-selenouridines are natural components of the bacterial tRNA epitranscriptome. Because selenium-containing biomolecules are redox-active entities, the oxidation susceptibility of 2-selenouridine (Se2U) was studied in the presence of hydrogen peroxide under various conditions and compared with previously reported data for 2-thiouridine (S2U). It was found that Se2U is more susceptible to oxidation and converted in the first step to the corresponding diselenide (Se2U)2, an unstable intermediate that decomposes to uridine and selenium. The reversibility of the oxidized state of Se2U was demonstrated by the efficient reduction of (Se2U)2 to Se2U in the presence of common reducing agents. Thus, the 2-selenouridine component of tRNA may have antioxidant potential in cells because of its ability to react with both cellular ROS components and reducing agents. Interestingly, in the course of the reactions studied, we found that (Se2U)2 reacts with Se2U to form new 'oligomeric nucleosides' as linear and cyclic byproducts.


Assuntos
Nucleosídeos , Selênio , Indicadores e Reagentes , Compostos Organosselênicos , Oxirredução , RNA de Transferência/metabolismo , Substâncias Redutoras , Uridina/análogos & derivados , Uridina/metabolismo
4.
Cells ; 11(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563829

RESUMO

The bacterial enzyme tRNA 2-selenouridine synthase (SelU) is responsible for the conversion of 5-substituted 2-thiouridine (R5S2U), present in the anticodon of some bacterial tRNAs, into 5-substituted 2-selenouridine (R5Se2U). We have already demonstrated using synthetic RNAs that transformation S2U→Se2U is a two-step process, in which the S2U-RNA is geranylated and the resulting geS2U-RNA is selenated. Currently, the question is how SelU recognizes its substrates and what the cellular pathway of R5S2U→R5Se2U conversion is in natural tRNA. In the study presented here, we characterized the SelU substrate requirements, identified SelU-associated tRNAs and their specific modifications in the wobble position. Finally, we explained the sequence of steps in the selenation of tRNA. The S2U position within the RNA chain, the flanking sequence of the modification, and the length of the RNA substrate, all have a key influence on the recognition by SelU. MST data on the affinity of SelU to individual RNAs confirmed the presumed process. SelU binds the R5S2U-tRNA and then catalyzes its geranylation to the R5geS2U-tRNA, which remains bound to the enzyme and is selenated in the next step of the transformation. Finally, the R5Se2U-tRNA leaves the enzyme and participates in the translation process. The enzyme does not directly catalyze the R5S2U-tRNA selenation and the R5geS2U-tRNA is the intermediate product in the linear sequence of reactions.


Assuntos
Escherichia coli , RNA de Transferência , Bactérias/metabolismo , Escherichia coli/metabolismo , Compostos Organosselênicos , RNA de Transferência/genética , Especificidade por Substrato , Sulfurtransferases , Uridina/análogos & derivados
5.
Bioorg Chem ; 122: 105739, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306417

RESUMO

Bacterial tRNA 2-selenouridine synthase (SelU) in vitro converts S2U-RNA to its selenium analog (Se2U-RNA) in a two-step process: (i) geranylation of S2U-RNA (with geranyl pyrophosphate, gePP), and (ii) selenation of the resulting geS2U-RNA (with the selenophosphate anion, SePO33-). Using an S2U-containing anticodon stem-loop fragment derived from tRNALys (S2U-RNA) and recombinant SelU with an MBP tag, we found that only geranyl (C10) pyrophosphate is the substrate for this enzyme, while other pyrophosphates such as isopentenyl (C5), dimethylallyl (C5), farnesyl (C15) and geranylgeranyl (C20) are not. Interestingly, methyl (C1)- and C5-, C10-, and C15-prenyl-containing S2U-RNAs (which were chemically obtained) underwent the selenation reaction promoted by SelU, although the Se2U-RNA product was obtained in decreasing yields in the following order: geranyl ≥ farnesyl > dimethylallyl ≫ methyl. Microscale thermophoresis showed an affinity between gePP and SelU in the micromolar range, while the other pyrophosphates tested, such as isopentenyl, dimethylallyl, farnesyl and geranylgeranyl, either did not bind to the protein or their binding affinity was above 1 mM. These results agree well with the in silico analysis, with gePP being the best binding substrate (the lowest relative free energy of binding (ΔG) and a small solvent-accessible surface area (SASA)). These results suggest that SelU has high substrate specificity for the prenylation reaction (only gePP is accepted), whereas there is little discrimination for the selenation reaction. We therefore suggest that only gePP and the geranylated tRNA serve as substrates for the conversion of 2-thio-tRNAs to 2-seleno-tRNAs, as it is found in the bacterial system.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Selênio , Sulfurtransferases , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Neopreno , Sulfurtransferases/genética , Sulfurtransferases/metabolismo
6.
Chem Commun (Camb) ; 57(93): 12540-12543, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34755158

RESUMO

A single point mutation (A4435G) in the human mitochondrial tRNAMet (hmt-tRNAMet) gene causes severe mitochondrial disorders associated with hypertension, type 2 diabetes and LHON. This mutation leads to the exchange of A37 in the anticodon loop of hmt-tRNAMet for G37 and 1-methylguanosine (m1G37). Here we present the first synthesis and structural/biophysical studies of the anticodon stem and loop of pathogenic hmt-tRNAsMet.


Assuntos
Guanosina/análogos & derivados , Guanosina/química , Mitocôndrias/metabolismo , RNA de Transferência de Metionina/genética , Códon , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Humanos , Hipertensão/genética , Hipertensão/patologia , Conformação de Ácido Nucleico , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , RNA de Transferência de Metionina/química
7.
Cells ; 10(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34571981

RESUMO

Studying the dynamics changes of neutrophils during innate immune response in coronavirus 2019 (COVID-19) can help understand the pathogenesis of this disease. The aim of the study was to assess the usefulness of new neutrophil activation parameters: Immature Granulocyte (IG), Neutrophil Reactivity Intensity (NEUT-RI), Neutrophil Granularity Intensity (NEUT-GI), and data relating to granularity, activity, and neutrophil volume (NE-WX, NE-WY, NE-WZ) available in hematology analyzers to distinguish convalescent patients from patients with active SARS-CoV-2 infection and healthy controls (HC). The study group consisted of 79 patients with a confirmed positive RT-PCR test for SARS-CoV2 infection, 71 convalescent patients, and 20 HC. We observed leukopenia with neutrophilia in patients with active infection compared to convalescents and HC. The IG median absolute count was higher in convalescent patients than in COVID-19 and HC (respectively, 0.08 vs. 0.03 vs. 0.02, p < 0.0001). The value of the NEUT-RI parameter was the highest in HC and the lowest in convalescents (48.3 vs. 43.7, p < 0.0001). We observed the highest proportion of NE-WX, NE-WY, and NE-WZ parameters in HC, without differences between the COVID-19 and convalescent groups. New neutrophil parameters can be useful tools to assess neutrophils' activity and functionalities in the immune response during infection and recovery from COVID-19 disease.


Assuntos
COVID-19/patologia , Diferenciação Celular , Convalescença , Neutrófilos/patologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
8.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064412

RESUMO

Epidermal growth factor receptor (EGFR) is one of the most promising molecular targets for anticancer therapy. We used boron clusters as a platform for generation of new materials. For this, functional DNA constructs conjugated with boron clusters (B-ASOs) were developed. These B-ASOs, built from 1,2-dicarba-closo-dodecaborane linked with two anti-EGFR antisense oligonucleotides (ASOs), form with their complementary congeners torus-like nanostructures, as previously shown by atomic force microscope (AFM) and transmission electron cryo-microscopy (cryo-TEM) imaging. In the present work, deepened studies were carried out on B-ASO's properties. In solution, B-ASOs formed four dominant complexes as confirmed by non-denaturing polyacrylamide gel electrophoresis (PAGE). These complexes exhibited increased stability in cell lysate comparing to the non-modified ASO. Fluorescently labeled B-ASOs localized mostly in the cytoplasm and decreased EGFR expression by activating RNase H. Moreover, the B-ASO complexes altered the cancer cell phenotype, decreased cell migration rate, and arrested the cells in the S phase of cell cycle. The 1,2-dicarba-closo-dodecaborane-containing nanostructures did not activate NLRP3 inflammasome in human macrophages. In addition, as shown by inductively coupled plasma mass spectrometry (ICP MS), these nanostructures effectively penetrated the human squamous carcinoma cells (A431), showing their potential applicability as anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Boranos/farmacologia , Regulação Neoplásica da Expressão Gênica , Nanopartículas/química , Oligonucleotídeos Antissenso/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Boranos/síntese química , Boranos/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HeLa , Humanos , Cinética , Células MCF-7 , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Transdução de Sinais
9.
Cells ; 10(1)2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419040

RESUMO

Identification of patients with activation of the immune system which indicates the presence of infection is essential, especially in the times of the global coronavirus 2019 (COVID-19) pandemic. The aim of the present study was to evaluate the reactive lymphocytes (RE-LYMP) parameter in COVID-19 and to correlate it with activation lymphocytes markers by flow cytometry. The study group consisted of 40 patients: with COVID-19 infection (n = 20) and with others virus infections without COVID-19 (COVID-19(-) virus (n = 20)) and 20 healthy donors (HC). Blood count and flow cytometry were performed. The COVID-19(+) group had significantly lower RE-LYMP parameter than the COVID-19(-) virus group (5.45 vs. 11.05, p < 0.05). We observed higher proportion of plasmablasts in the COVID-19(+) and COVID-19(-) virus groups than HC (8.8 vs. 11.1 vs. 2.7, p < 0.05). In the COVID-19(+) there was a lower proportion of CD4+ CD38+ cells than in the other groups (significant differences between COVID-19(+) and COVID-19(-) virus groups). RE-LYMP correlated with activated T lymphocytes CD38+ and HLA-DR+ in the COVID-19(-) virus group, however in the COVID-19(+) group correlations with T lymphocytes CD25+ and CD45RO+ were observed. In summary the analysis of the RE-LYMP together with flow cytometric activation markers can be helpful in identifying and distinguishing patients with COVID-19(+) from other viruses and HC.


Assuntos
COVID-19/imunologia , Inflamação/imunologia , Subpopulações de Linfócitos/imunologia , Adulto , Idoso , Biomarcadores/sangue , COVID-19/epidemiologia , Estudos de Casos e Controles , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade
10.
Int J Lab Hematol ; 43(3): 395-402, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33270987

RESUMO

BACKGROUND: The Mindray BC-6200 is a new automatic hematology analyzer that quantifies the parameters of blood morphology and leukocyte differential in five populations (5-Diff). The aim of the study was to evaluate the BC-6200 and compare it with the Siemens ADVIA 2120i analyzer. MATERIALS AND METHODS: The comparison between BC-6200 and ADVIA 2120i analyzers was performed using 390 whole blood samples collected on K3 EDTA. For the BC-6200, the carryover effect, precision, and linearity were evaluated. 138 samples were used to assess the sensitivity and flag ability, suggesting the presence of abnormal cells such as blasts, immature granulocytes, or atypical lymphocytes. Flagging results were compared with microscopic evaluation of blood smears. RESULTS: The BC-6200 analyzer showed a high correlation (r ≥ .97) with ADVIA 2120i for most of the compared parameters except RDW (r = .8350), MPV (r = .7634), Mon# (r = .8366), Baso# (r = .9205), and NRBC (r = .3768). The BC-6200 had better correlation with microscopic evaluation for NRBC (r = .8902) compared with ADVIA 2120i (r = .5677). The BC-6200 has shown high efficiency for flagging blasts (80.4%), immature granulocytes (80.5%), and atypical lymphocytes (69.0%). CONCLUSION: The new Mindray BC-6200 hematology analyzer provides high measurements precision and good correlation with ADVIA 2120i for most of the morphology and 5-diff parameters.


Assuntos
Contagem de Células Sanguíneas/instrumentação , Contagem de Células Sanguíneas/métodos , Hematologia/instrumentação , Hematologia/métodos , Humanos , Contagem de Leucócitos/instrumentação , Contagem de Leucócitos/métodos , Leucócitos/citologia , Reprodutibilidade dos Testes
11.
Cells ; 9(11)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138194

RESUMO

Antisense DNA oligonucleotides, short interfering RNAs (siRNAs), and CRISPR/Cas9 genetic tools are the most useful therapeutic nucleic acids regulating gene expression based on the antisense specificity towards messenger RNA. Here, we present an effective novel strategy for inhibiting translation based on the antisense-controlled formation of an RNA quadruplex-duplex hybrid (QDH) between a G-rich RNA antisense oligoribonucleotide (Q-ASO) and specific mRNA, comprising two distant G-tracts. We selected epidermal growth factor receptor (EGFR) as a well-established target protein in anticancer therapy. The chemically modified, bi-functional anti-EGFR Q-ASO and a 56-nt long EGFR mRNA fragment, in the presence of potassium ions, were shown to form in vitro very stable parallel G-quadruplex containing a 28-nt long external loop folding to two duplex-stem structure. Besides, the Q-ASOs effectively reduced EGFR mRNA levels compared to the non-modified RNA and DNA antisense oligonucleotides (rASO, dASO). In addition, the hybridization specificity of Q-ASO comprising a covalently attached fluorescent tag was confirmed in living cells by visualization of the G4 green fluorescent species in the presence of other antisense inhibitors under competitive conditions. The results presented here offer novel insights into the potential application of Q-ASOs for the detection and/or alteration of (patho)biological processes through RNA:RNA quadruplex-duplex formation in cellular systems.


Assuntos
Receptores ErbB/metabolismo , Quadruplex G , Oligorribonucleotídeos Antissenso/metabolismo , RNA Mensageiro/genética , Sobrevivência Celular , Fluorescência , Inativação Gênica , Células HeLa , Humanos , Mitocôndrias/metabolismo , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Oligorribonucleotídeos Antissenso/química , Espectroscopia de Prótons por Ressonância Magnética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Temperatura
12.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825053

RESUMO

Sulfur- and selenium-modified uridines present in the wobble position of transfer RNAs (tRNAs) play an important role in the precise reading of genetic information and tuning of protein biosynthesis in all three domains of life. Both sulfur and selenium chalcogens functionally operate as key elements of biological molecules involved in the protection of cells against oxidative damage. In this work, 2-thiouracil (S2Ura) and 2-selenouracil (Se2Ura) were treated with hydrogen peroxide at 1:0.5, 1:1, and 1:10 molar ratios and at selected pH values ranging from 5 to 8. It was found that Se2Ura was more prone to oxidation than its sulfur analog, and if reacted with H2O2 at a 1:1 or lower molar ratio, it predominantly produced diselenide Ura-Se-Se-Ura, which spontaneously transformed to a previously unknown Se-containing two-ring compound. Its deselenation furnished the major reaction product, a structure not related to any known biological species. Under the same conditions, only a small amount of S2Ura was oxidized to form Ura-SO2H and uracil (Ura). In contrast, 10-fold excess hydrogen peroxide converted Se2Ura and S2Ura into corresponding Ura-SeOnH and Ura-SOnH intermediates, which decomposed with the release of selenium and sulfur oxide(s) to yield Ura as either a predominant or exclusive product, respectively. Our results confirmed significantly different oxidation pathways of 2-selenouracil and 2-thiouracil.


Assuntos
Tiouracila/química , Uracila/análogos & derivados , Peróxido de Hidrogênio/química , Oxirredução , Uracila/química
13.
Biomolecules ; 10(5)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380792

RESUMO

Antisense oligonucleotides conjugated with boron clusters (B-ASOs) have been described as potential gene expression inhibitors and carriers of boron for boron neutron capture therapy (BNCT), providing a dual-action therapeutic platform. In this study, we tested the nucleolytic stability of DNA oligonucleotides labeled with metallacarborane [(3,3'-iron-1,2,1',2'-dicarbollide)(-1)]ate [Fe(C2B9H11)2] (FESAN) against snake venom phosphodiesterase (svPDE, 3'→5'-exonuclease). Contrary to the previously observed protective effect of carborane (C2B10H12) modifications, the B-ASOs containing a metallacarborane moiety at the 5'-end of the oligonucleotide chain were hydrolyzed faster than their parent nonmodified oligomers. Interestingly, an enhancement in the hydrolysis rate was also observed in the presence of free metallacarborane, and this reaction was dependent on the concentration of the metallacarborane. Microscale thermophoresis (MST) analysis confirmed the high affinity (Kd nM range) of the binding of the metallacarborane to the proteins of crude snake venom and the moderate affinity (Kd µM range) between the metallacarborane and the short single-stranded DNA. We hypothesize that the metallacarborane complex covalently bound to B-ASO holds DNA molecules close to the protein surface, facilitating enzymatic cleavage. The addition of metallacarborane alone to the ASO/svPDE reaction mixture provides the interface to attract freely floating DNA molecules. In both cases, the local DNA concentration around the enzymes increases, giving rise to faster hydrolysis. It was experimentally shown that an allosteric effect, possibly attributable to the observed boost in the 3´â†’5´-exonucleolytic activity of snake venom phosphodiesterase, is much less plausible.


Assuntos
Compostos de Boro/química , DNA Antissenso/análogos & derivados , Diester Fosfórico Hidrolases/metabolismo , Venenos de Serpentes/enzimologia , Hidrólise , Ligação Proteica , Especificidade por Substrato
14.
Nanoscale ; 12(1): 103-114, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31763634

RESUMO

Nucleic acids are key biomolecules in all life forms. These biomolecules can encode and transfer information via Watson-Crick base-pairing interactions and can form double-stranded structures between complementary sequences with high precision. These properties make nucleic acids extremely successful in applications in materials science as nanoconstruction materials. Herein, we describe a method for the automated synthesis of "oligopeds", which are building blocks based on the boron cluster structure equipped with short DNA adapters; these building blocks assemble into functional nanoparticles. The obtained, well defined, torus-like structures are the first DNA nanoconstructs based on a boron cluster scaffold. The results indicate the potential of boron clusters in DNA nanoconstruction and open the way for the design of entirely new types of buildings blocks based on polyhedral heteroborane geometry and its unique properties. The use of antisense oligonucleotides as DNA adapters illustrates one of the possible applications of the obtained nanoconstructs as vectors for therapeutic nucleic acids.


Assuntos
Boranos/química , Nanopartículas/química , Ácidos Nucleicos/química , Sequência de Bases , Boranos/síntese química , Linhagem Celular Tumoral , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Inativação Gênica , Humanos , Microscopia de Força Atômica , Oligonucleotídeos Antissenso/análise , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Termodinâmica
15.
Chembiochem ; 19(7): 687-695, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29287127

RESUMO

The 5-substituted 2-thiouridines (R5S2Us) present in the first (wobble) position of the anticodon of transfer RNAs (tRNAs) contribute to accuracy in reading mRNA codons and tuning protein synthesis. Previously, we showed that, under oxidative stress conditions in vitro, R5S2Us were sensitive to hydrogen peroxide (H2 O2 ) and that their oxidative desulfuration produced 5-substituted uridines (R5Us) and 4-pyrimidinone nucleosides (R5H2Us) at a ratio that depended on the pH and an R5 substituent. Here, we demonstrate that the desulfuration of 2-thiouridines, either alone or within an RNA/tRNA chain, is catalyzed by cytochrome c (cyt c). Its kinetics are similar to those of Fenton-type catalytic 2-thiouridine (S2U) desulfuration. Cyt c/H2 O2 - and FeII -mediated reactions deliver predominantly 4-pyrimidinone nucleoside (H2U)-type products. The pathway of the cyt c/H2 O2 -peroxidase-mediated S2U→H2U transformation through uridine sulfenic (U-SOH), sulfinic (U-SO2 H), and sulfonic (U-SO3 H) intermediates is confirmed by LC-MS. The cyt c/H2 O2 -mediated oxidative damage of S2U-tRNA may have biological relevance through alteration of the cellular functions of transfer RNA.


Assuntos
Citocromos c/química , Peróxido de Hidrogênio/química , RNA de Transferência/química , Tiouridina/análogos & derivados , Animais , Biocatálise , Cavalos , Humanos , Ferro/química , Cinética , Oxirredução , Saccharomyces cerevisiae/genética , Tiouridina/química
16.
Bioorg Med Chem ; 22(7): 2133-40, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24631359

RESUMO

Gemcitabine (dFdC) is a cytidine analog remarkably active against a wide range of solid tumors. Inside a cell, gemcitabine is phosphorylated by deoxycytidine kinase to yield gemcitabine monophosphate, further converted to gemcitabine di- and triphosphate. The most frequent form of acquired resistance to gemcitabine in vitro is the deoxycytidine kinase deficiency. Thus, proper prodrugs carrying the 5'-pdFdC moiety may help to overcome this problem. A series of new derivatives of gemcitabine possessing N-acyl(thio)phosphoramidate moieties were prepared and their cytotoxic properties were determined. N-Acyl-phosphoramidate derivatives of gemcitabine have similar cytotoxicity as gemcitabine itself, and have been found accessible to the cellular enzymes. The nicotinic carboxamide derivative of gemcitabine 5'-O-phosphorothioate occurred to be the best inhibitor of bacterial DNA polymerase I and human DNA polymerase α.


Assuntos
Amidas/farmacologia , DNA Polimerase I/antagonistas & inibidores , Desoxicitidina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Ácidos Fosfóricos/farmacologia , Pró-Fármacos/farmacologia , Amidas/síntese química , Amidas/química , DNA Polimerase I/metabolismo , Desoxicitidina/síntese química , Desoxicitidina/química , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/enzimologia , Células HeLa , Humanos , Células K562 , Estrutura Molecular , Ácidos Fosfóricos/síntese química , Ácidos Fosfóricos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade , Gencitabina
17.
Antivir Chem Chemother ; 21(3): 143-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21233535

RESUMO

BACKGROUND: pyrimidine nucleoside analogues represent an established class of clinically useful antiviral agents. Once inside the cell, they are activated by a series of intracellular phosphorylation steps to produce 5´-triphosphate derivatives. In many cases, nucleoside analogues are poor substrates for the cellular kinases needed for their activation. It is clear that intracellular introduction of nucleoside analogues as phosphorylated metabolites (so called pronucleotides) could circumvent difficulties associated with the use of non-phosphorylated nucleoside analogues. METHODS: among the current diverse pronucleotide approaches, nucleoside phosphoramidate derivatives appear to be an interesting class of potential antiviral agents because of the known relatively low stability of the P-N bond in cellular media. On the basis of oxathiaphospholane chemistry, a series of novel conjugates of 5´-O-phosphorylated zidovudine (AZT) and stavudine (d4T) with amino acids carboxamidates were obtained. The synthesis was performed using N-(2-thiono-1,3,2-oxathiaphospholane) derivatives of amino acids carboxamides as precursors. RESULTS: all synthesized compounds were studied against DNA and RNA viruses. Specific antiviral activities were only detected against HIV type-1 and HIV type-2 in MT-4 cell cultures at compound concentrations that were equally active or slightly inferior to the activity of their parent drugs (2- to 20-fold for the AZT prodrugs and 6- to 40-fold for the d4T prodrugs). The compounds were also evaluated for their anti-HIV activity in CEM and in CEM thymidine-kinase-deficient (CEM/TK(-)) cell cultures. CONCLUSIONS: loss of compound antiviral potency in the CEM/TK(-) cells suggested an eventual conversion of the test compounds to the free nucleosides prior to further phosphorylation to the active 5´-triphosphate metabolite.


Assuntos
Amidas/síntese química , Amidas/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Nucleosídeos/síntese química , Nucleosídeos/farmacologia , Ácidos Fosfóricos/síntese química , Ácidos Fosfóricos/farmacologia , Antivirais/química , Técnicas de Cultura de Células , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...