Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(17): 6454-6464, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38699272

RESUMO

Supported noble metal catalysts, ubiquitous in chemical technology, often undergo dynamic transformations between reduced and oxidized states-which influence the metal nuclearities, oxidation states, and catalytic properties. In this investigation, we report the results of in situ X-ray absorption spectroscopy, scanning transmission electron microscopy, and other physical characterization techniques, bolstered by density functional theory, to elucidate the structural transformations of a set of MgO-supported palladium catalysts under oxidative treatment conditions. As the calcination temperature increased, the as-synthesized supported metallic palladium nanoparticles underwent oxidation to form palladium oxides (at approximately 400 °C), which, at approximately 500 °C, were oxidatively fragmented to form mixtures of atomically dispersed palladium cations. The data indicate two distinct types of atomically dispersed species: palladium cations located at MgO steps and those embedded in the first subsurface layer of MgO. The former exhibit significantly higher (>500 times) catalytic activity for ethylene hydrogenation than the latter. The results pave the way for designing highly active and stable supported palladium hydrogenation catalysts with optimized metal utilization.

2.
ACS Catal ; 14(7): 4999-5005, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38601777

RESUMO

Isolated platinum(II) ions anchored at acid sites in the pores of zeolite HZSM-5, initially introduced by aqueous ion exchange, were reduced to form platinum nanoparticles that are stably dispersed with a narrow size distribution (1.3 ± 0.4 nm in average diameter). The nanoparticles were confined in reservoirs within the porous zeolite particles, as shown by electron beam tomography and the shape-selective catalysis of alkene hydrogenation. When the nanoparticles were oxidatively fragmented in dry air at elevated temperature, platinum returned to its initial in-pore atomically dispersed state with a charge of +2, as shown previously by X-ray absorption spectroscopy. The results determine the conditions under which platinum is retained within the pores of HZSM-5 particles during redox cycles that are characteristic of the reductive conditions of catalyst operation and the oxidative conditions of catalyst regeneration.

3.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450731

RESUMO

Uranium-based materials are valuable assets in the energy, medical, and military industries. However, understanding their sensitivity to hydrogen embrittlement is particularly challenging due to the toxicity of uranium and the computationally expensive nature of quantum-based methods generally required to study such processes. In this regard, we have developed a Chebyshev Interaction Model for Efficient Simulation (ChIMES) that can be employed to compute energies and forces of U and UH3 bulk structures with vacancies and hydrogen interstitials with accuracy similar to that of Density Functional Theory (DFT) while yielding linear scaling and orders of magnitude improvement in computational efficiency. We show that the bulk structural parameters, uranium and hydrogen vacancy formation energies, and diffusion barriers predicted by the ChIMES potential are in strong agreement with the reference DFT data. We then use ChIMES to conduct molecular dynamics simulations of the temperature-dependent diffusion of a hydrogen interstitial and determine the corresponding diffusion activation energy. Our model has particular significance in studies of actinides and other high-Z materials, where there is a strong need for computationally efficient methods to bridge length and time scales between experiments and quantum theory.

4.
J Am Chem Soc ; 146(14): 10060-10072, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38551239

RESUMO

The reduction of CO2 is known to promote increased alkene yields from alkane dehydrogenations when the reactions are cocatalyzed. The mechanism of this promotion is not understood in the context of catalyst active-site environments because CO2 is amphoteric, and even general aspects of the chemistry, including the significance of competing side reactions, differ significantly across catalysts. Atomically dispersed chromium cations stabilized in highly siliceous MFI zeolite are shown here to enable the study of the role of parallel CO2 reduction during ethylene-selective ethane dehydrogenation. Based on infrared spectroscopy and X-ray absorption spectroscopy data interpreted through calculations using density functional theory (DFT), the synthesized catalyst contains atomically dispersed Cr cations stabilized by silanol nests in micropores. Reactor studies show that cofeeding CO2 increases stable ethylene-selective ethane dehydrogenation rates over a wide range of partial pressures. Operando X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) spectra indicate that during reaction at 650 °C the Cr cations maintain a nominal 2+ charge and a total Cr-O coordination number of approximately 2. However, CO2 reduction induces a change, correlated with the CO2 partial pressure, in the population of two distinct Cr-O scattering paths. This indicates that the promotional effect of parallel CO2 reduction can be attributed to a subtle change in Cr-O bond lengths in the local coordination environment of the active site. These insights are made possible by simultaneously fitting multiple EXAFS spectra recorded in different reaction conditions; this novel procedure is expected to be generally applicable for interpreting operando catalysis EXAFS data.

5.
ACS Catal ; 14(3): 1232-1242, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38327646

RESUMO

Machine learning (ML), when used synergistically with atomistic simulations, has recently emerged as a powerful tool for accelerated catalyst discovery. However, the application of these techniques has been limited by the lack of interpretable and transferable ML models. In this work, we propose a curriculum-based training (CBT) philosophy to systematically develop reactive machine learning potentials (rMLPs) for high-throughput screening of zeolite catalysts. Our CBT approach combines several different types of calculations to gradually teach the ML model about the relevant regions of the reactive potential energy surface. The resulting rMLPs are accurate, transferable, and interpretable. We further demonstrate the effectiveness of this approach by exhaustively screening thousands of [CuOCu]2+ sites across hundreds of Cu-zeolites for the industrially relevant methane activation reaction. Specifically, this large-scale analysis of the entire International Zeolite Association (IZA) database identifies a set of previously unexplored zeolites (i.e., MEI, ATN, EWO, and CAS) that show the highest ensemble-averaged rates for [CuOCu]2+-catalyzed methane activation. We believe that this CBT philosophy can be generally applied to other zeolite-catalyzed reactions and, subsequently, to other types of heterogeneous catalysts. Thus, this represents an important step toward overcoming the long-standing barriers within the computational heterogeneous catalysis community.

6.
Langmuir ; 40(7): 3691-3701, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38314715

RESUMO

This work aims to address the challenge of developing interpretable ML-based models when access to large-scale computational resources is limited. Using CoMoFeNiCu high-entropy alloy catalysts as an example, we present a cost-effective workflow that synergistically combines descriptor-based approaches, machine learning-based force fields, and low-cost density functional theory (DFT) calculations to predict high-quality adsorption energies for H, N, and NHx (x = 1, 2, and 3) adsorbates. This is achieved using three specific modifications to typical DFT workflows including: (1) using a sequential optimization protocol, (2) developing a new geometry-based descriptor, and (3) repurposing the already-available low-cost DFT optimization trajectories to develop a ML-FF. Taken together, this study illustrates how cost-effective DFT calculations and appropriately designed descriptors can be used to develop cheap but useful models for predicting high-quality adsorption energies at significantly lower computational costs. We anticipate that this resource-efficient philosophy may be broadly relevant to the larger surface catalysis community.

7.
J Phys Chem C Nanomater Interfaces ; 127(3): 1455-1463, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36733763

RESUMO

Machine learning potentials (MLPs) capable of accurately describing complex ab initio potential energy surfaces (PESs) have revolutionized the field of multiscale atomistic modeling. In this work, using an extensive density functional theory (DFT) data set (denoted as Si-ZEO22) consisting of 219 unique zeolite topologies (350,000 unique DFT calculations) found in the International Zeolite Association (IZA) database, we have trained a DeePMD-kit MLP to model the dynamics of silica frameworks. The performance of our model is evaluated by calculating various properties that probe the accuracy of the energy and force predictions. This MLP demonstrates impressive agreement with DFT for predicting zeolite structural properties, energy-volume trends, and phonon density of states. Furthermore, our model achieves reasonable predictions for stress-strain relationships without including DFT stress data during training. These results highlight the ability of MLPs to capture the flexibility of zeolite frameworks and motivate further MLP development for nanoporous materials with near-ab initio accuracy.

8.
Mater Horiz ; 10(1): 187-196, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36330997

RESUMO

Metal organic frameworks (MOFs) that incorporate metal oxide cluster nodes, exemplified by UiO-66, have been widely studied, especially in terms of their deviations from the ideal, defect-free crystalline structures. Although defects such as missing linkers, missing nodes, and the presence of adventitious synthesis-derived node ligands (such as acetates and formates) have been proposed, their exact structures remain unknown. Previously, it was demonstrated that defects are correlated and span multiple unit cells. The highly specialized techniques used in these studies are not easily applicable to other MOFs. Thus, there is a need to develop new experimental and computational approaches to understand the structure and properties of defects in a wider variety of MOFs. Here, we show how low-frequency phonon modes measured by inelastic neutron scattering (INS) spectroscopy can be combined with density functional theory (DFT) simulations to provide unprecedented insights into the defect structure of UiO-66. We are able to identify and assign peaks in the fingerprint region (<100 cm-1) which correspond to phonon modes only present in certain defective topologies. Specifically, this analysis suggests that our sample of UiO-66 consists of predominantly defect-free fcu regions with smaller domains corresponding to a defective bcu topology with 4 and 2 acetate ligands bound to the Zr6O8 nodes. Importantly, the INS/DFT approach provides detailed structural insights (e.g., relative positions and numbers of acetate ligands) that are not accessible with microscopy-based techniques. The quantitative agreement between DFT simulations and the experimental INS spectrum combined with the relative simplicity of sample preparation, suggests that this methodology may become part of the standard and preferred protocol for the characterization of MOFs, and, in particular, for elucidating the structure defects in these materials.

9.
J Am Chem Soc ; 144(30): 13874-13887, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35854402

RESUMO

Catalysts composed of platinum dispersed on zeolite supports are widely applied in industry, and coking and sintering of platinum during operation under reactive conditions require their oxidative regeneration, with the platinum cycling between clusters and cations. The intermediate platinum species have remained only incompletely understood. Here, we report an experimental and theoretical investigation of the structure, bonding, and local environment of cationic platinum species in zeolite ZSM-5, which are key intermediates in this cycling. Upon exposure of platinum clusters to O2 at 700 °C, oxidative fragmentation occurs, and Pt2+ ions are stabilized at six-membered rings in the zeolite that contain paired aluminum sites. When exposed to CO under mild conditions, these Pt2+ ions form highly uniform platinum gem-dicarbonyls, which can be converted in H2 to Ptδ+ monocarbonyls. This conversion, which weakens the platinum-zeolite bonding, is a first step toward platinum migration and aggregation into clusters. X-ray absorption and infrared spectra provide evidence of the reductive and oxidative transformations in various gas environments. The chemistry is general, as shown by the observation of platinum gem-dicarbonyls in several commercially used zeolites (ZSM-5, Beta, mordenite, and Y).

10.
Langmuir ; 38(30): 9335-9346, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35862149

RESUMO

Hydrogen embrittlement of uranium, which arises due to the formation of a structurally weak pyrophoric hydride, poses a major safety risk in material applications. Previous experiments have shown that hydriding begins on the top or near the surface (i.e., subsurface) of α-uranium. However, the fundamental molecular-level mechanism of this process remains unknown. In this work, starting from pristine α-U bulk and surfaces, we present a systematic investigation of possible mechanisms for the formation of metal hydride. Specifically, we address this problem by examining the individual steps of hydrogen embrittlement, including surface adsorption, subsurface absorption, and the interlayer diffusion of atomic hydrogen. Furthermore, by examining these processes across different facets, we highlight the importance of both (1) hydrogen monolayer coverage and (2) applied tensile strain on hydriding kinetics. Taken together, by studying previously overlooked phenomena, this study provides foundational insights into the initial steps of this overall complex process. We anticipate that this work will guide near-term future development of multiscale kinetic models for uranium hydriding and subsequently identify potential strategies to mitigate this undesired process.

11.
J Phys Chem Lett ; 13(17): 3896-3903, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35471032

RESUMO

Atomically dispersed metals on metal oxide supports are a rapidly growing class of catalysts. Developing an understanding of where and how the metals are bonded to the supports is challenging because support surfaces are heterogeneous, and most reports lack a detailed consideration of these points. Herein, we report two atomically dispersed CO oxidation catalysts having markedly different metal-support interactions: platinum in the first layer of crystalline MgO powder and platinum in the second layer of this support. Structural models have been determined on the basis of data and computations, including those determined by extended X-ray absorption fine structure and X-ray absorption near edge structure spectroscopies, infrared spectroscopy of adsorbed CO, and scanning transmission electron microscopy. The data demonstrate the transformation of surface to subsurface platinum as the temperature of sample calcination increased. Catalyst performance data demonstrate the lower activity but greater stability of the subsurface platinum than of the surface platinum.

12.
Appl Spectrosc ; 76(4): 485-495, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34342493

RESUMO

Surface-enhanced Raman scattering (SERS) is a powerful technique for sensitive label-free analysis of chemical and biological samples. While much recent work has established sophisticated automation routines using machine learning and related artificial intelligence methods, these efforts have largely focused on downstream processing (e.g., classification tasks) of previously collected data. While fully automated analysis pipelines are desirable, current progress is limited by cumbersome and manually intensive sample preparation and data collection steps. Specifically, a typical lab-scale SERS experiment requires the user to evaluate the quality and reliability of the measurement (i.e., the spectra) as the data are being collected. This need for expert user-intuition is a major bottleneck that limits applicability of SERS-based diagnostics for point-of-care clinical applications, where trained spectroscopists are likely unavailable. While application-agnostic numerical approaches (e.g., signal-to-noise thresholding) are useful, there is an urgent need to develop algorithms that leverage expert user intuition and domain knowledge to simplify and accelerate data collection steps. To address this challenge, in this work, we introduce a machine learning-assisted method at the acquisition stage. We tested six common algorithms to measure best performance in the context of spectral quality judgment. For adoption into future automation platforms, we developed an open-source python package tailored for rapid expert user annotation to train machine learning algorithms. We expect that this new approach to use machine learning to assist in data acquisition can serve as a useful building block for point-of-care SERS diagnostic platforms.


Assuntos
Inteligência Artificial , Análise Espectral Raman , Coleta de Dados , Aprendizado de Máquina , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
13.
Langmuir ; 37(47): 13903-13908, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34792360

RESUMO

The strong affinity of water to zeolite adsorbents has made adsorption of CO2 from humid gas mixtures such as flue gas nearly impossible under equilibrated conditions. Here, in this manuscript, we describe a unique cooperative adsorption mechanism between H2O and Cs+ cations on Cs-RHO zeolite, which actually facilitates the equilibrium adsorption of CO2 under humid conditions. Our data demonstrate that, at a relative humidity of 5%, Cs-RHO adsorbs 3-fold higher amounts of CO2 relative to dry conditions, at a temperature of 30 °C and CO2 pressure of 1 bar. A comparative investigation of univalent cation-exchanged RHO zeolites with H+, Li+, Na+, K+, Rb+, and Cs+ shows an increase of equilibrium CO2 adsorption under humid versus dry conditions to be unique to Cs-RHO. In situ powder X-ray diffraction indicates the appearance of a new phase with Im3̅m symmetry after H2O saturation of Cs-RHO. A mixed-cation exchanged NaCs-RHO exhibits similar phase transitions after humid CO2 adsorption; however, we found no evidence of cooperativity between Cs+ and Na+ cations in adsorption, in single-component H2O and CO2 adsorption. We hypothesize based on previous Rietveld refinements of CO2 adsorption in Cs-RHO zeolite that the observed phase change is related to solvation of extra-framework Cs+ cations by H2O. In the case of Cs-RHO, molecular modeling results suggest that hydration of these cations favors their migration from an original D8R position to S8R sites. We posit that this movement enables a trapdoor mechanism by which CO2 can interact with Cs+ at S8R sites to access the α-cage.

14.
J Am Chem Soc ; 143(48): 20144-20156, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34806881

RESUMO

Atomically dispersed supported metal catalysts offer new properties and the benefits of maximized metal accessibility and utilization. The characterization of these materials, however, remains challenging. Using atomically dispersed platinum supported on crystalline MgO (chosen for its well-defined bonding sites) as a prototypical example, we demonstrate how systematic density functional theory calculations for assessing all the potentially stable platinum sites, combined with automated analysis of extended X-ray absorption fine structure (EXAFS) spectra, leads to unbiased identification of isolated, surface-enveloped platinum cations as the catalytic species for CO oxidation. The catalyst has been characterized by atomic-resolution imaging and EXAFS and high-energy resolution fluorescence detection X-ray absorption near edge spectroscopy. The proposed platinum sites are in agreement with experiment. This theory-guided workflow leads to rigorously determined structural models and provides a more detailed picture of the structure of the catalytically active site than what is currently possible with conventional EXAFS analyses. As this approach is efficient and agnostic to the metal, support, and catalytic reaction, we posit that it will be of broad interest to the materials characterization and catalysis communities.

15.
J Phys Chem Lett ; 12(46): 11252-11258, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34762803

RESUMO

Catalytic conversion of alcohols underlies many commodity and fine chemical syntheses, but a complete mechanistic understanding is lacking. We examined catalytic oxidative conversion of methanol near atmospheric pressure using operando small-aperture molecular beam time-of-flight mass spectrometry, interrogating the gas phase 500 µm above Pd-based catalyst surfaces. In addition to a variety of stable C1-3 species, we detected methoxymethanol (CH3OCH2OH)─a rarely observed and reactive C2 oxygenate that has been proposed to be a critical intermediate in methyl formate production. Methoxymethanol is observed above Pd, AuxPdy alloys, and oxide-supported Pd (common methanol oxidation catalysts). Experiments establish temperature and reactant feed ratio dependences of methoxymethanol generation, and calculations using density functional theory are used to examine the energetics of its likely formation pathway. These results suggest that future development of catalysts and microkinetic models for methanol oxidation should be augmented and constrained to accommodate the formation, desorption, adsorption, and surface reactions involving methoxymethanol.

16.
J Phys Chem Lett ; 11(23): 10029-10036, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33179928

RESUMO

It has been well-established that unfavorable scaling relationships between *OOH, *OH, and *O are responsible for the high overpotentials associated with oxygen electrochemistry. A number of strategies have been proposed for breaking these linear constraints for traditional electrocatalysts (e.g., metals, alloys, metal-doped carbons); such approaches have not yet been validated experimentally for heterogeneous catalysts. Development of a new class of catalysts capable of circumventing such scaling relations remains an ongoing challenge in the field. In this work, we use density functional theory (DFT) calculations to demonstrate that bimetallic porphyrin-based MOFs (PMOFs) are an ideal materials platform for rationally designing the 3-D active site environments for oxygen reduction reaction (ORR). Specifically, we show that the *OOH binding energy and the theoretical limiting potential can be optimized by appropriately tuning the transition metal active site, the oxophilic spectator, and the MOF topology. Our calculations predict theoretical limiting potentials as high as 1.07 V for Fe/Cr-PMOF-Al, which exceeds the Pt/C benchmark for 4e ORR. More broadly, by highlighting their unique characteristics, this work aims to establish bimetallic porphyrin-based MOFs as a viable materials platform for future experimental and theoretical ORR studies.

17.
ACS Appl Mater Interfaces ; 12(35): 39074-39081, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805928

RESUMO

Catalytic systems whose properties can be systematically tuned via changes in synthesis conditions are highly desirable for the next-generation catalyst design and optimization. Herein, we present a two-dimensional (2D) conductive metal-organic framework consisting of M-N4 units (M = Ni, Cu) and a hexaaminobenzene (HAB) linker as a catalyst for the oxygen reduction reaction. By varying synthetic conditions, we prepared two Ni-HAB catalysts with different crystallinities, resulting in catalytic systems with different electric conductivities, electrochemical activity, and stability. We show that crystallinity has a positive impact on conductivity and demonstrate that this improved crystallinity/conductivity improves the catalytic performance of our model system. Additionally, density functional theory simulations were performed to probe the origin of M-HAB's catalytic activity, and they suggest that M-HAB's organic linker acts as the active site with the role of the metal being to modulate the linker sites' binding strength.

18.
Inorg Chem ; 57(12): 7222-7238, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29863849

RESUMO

We investigate the (surface) bonding of a class of industrially and biologically important molecules in which the chemically active orbital is a 2 p electron lone pair located on an N or O atom bound via single bonds to H or alkyl groups. This class includes water, ammonia, alcohols, ethers, and amines. Using extensive density functional theory (DFT) calculations, we discover scaling relations (correlations) among molecular binding energies of different members of this class: the bonding energetics of a single member can be used as a descriptor for other members. We investigate the bonding mechanism for a representative (H2O) and find the most important physical surface properties that dictate the strength and nature of the bonding through a combination of covalent and noncovalent electrostatic effects. We describe the importance of surface intrinsic electrostatic, geometric, and mechanical properties in determining the extent of the lone-pair-surface interactions. We study systems including ionic materials in which the surface positive and negative centers create strong local surface electric fields, which polarize the dangling lone pair and lead to a strong "electrostatically driven bond". We emphasize the importance of noncovalent electrostatic effects and discuss why a fully covalent picture, common in the current first-principles literature on surface bonding of these molecules, is not adequate to correctly describe the bonding mechanism and energy trends. By pointing out a completely different mechanism (charge transfer) as the major factor for binding N- and O-containing unsaturated (radical) adsorbates, we explain why their binding energies can be tuned independently from those of the aforementioned species, having potential implications in scaling-driven catalyst discovery.

19.
Chem Rev ; 118(5): 2302-2312, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29405702

RESUMO

Despite the dedicated search for novel catalysts for fuel cell applications, the intrinsic oxygen reduction reaction (ORR) activity of materials has not improved significantly over the past decade. Here, we review the role of theory in understanding the ORR mechanism and highlight the descriptor-based approaches that have been used to identify catalysts with increased activity. Specifically, by showing that the performance of the commonly studied materials (e.g., metals, alloys, carbons, etc.) is limited by unfavorable scaling relationships (for binding energies of reaction intermediates), we present a number of alternative strategies that may lead to the design and discovery of more promising materials for ORR.

20.
Phys Chem Chem Phys ; 19(5): 3575-3581, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28094377

RESUMO

While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model to aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. This model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...