Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(44): 16224-16234, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37853758

RESUMO

Bismuthinite (Bi2S3) nanostructures have garnered significant interest due to their appealing photoresponsivity which has positioned them as an attractive choice for energy conversion applications. However, to utilize their full potential, a simple and economically viable method of preparation is highly desirable. Herein, we present the synthesis and characterization including structural elucidation of a new air- and moisture-stable bismuth-pyrimidylthiolate complex. This complex serves as an efficient single-source molecular precursor for the facile preparation of phase-pure Bi2S3 nanostructures. Powder X-ray diffraction (PXRD), Raman spectroscopy, electron dispersive spectroscopy (EDS) and electron microscopy techniques were used to assess the crystal structure, phase purity, elemental composition and morphology of the as-prepared nanostructures. This study also revealed the profound effects of temperature and growth duration on the crystallinity, phase formation and morphology of nanostructures. The optical band gap of the nanostructures was tuned within the range of 1.9-2.3 eV, which is blue shifted with respect to the bulk bandgap and suitable for photovoltaic applications. Liquid junction photo-electrochemical cells fabricated from the as-prepared Bi2S3 nanostructure exhibit efficient photoresponsivity and good photo-stability, which project them as promising candidates for alternative low-cost photon absorber materials.

2.
Dalton Trans ; 51(32): 12181-12191, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35876784

RESUMO

Stibnite Sb2S3 and tetrahedrite Cu12Sb4S13 nanostructures being economical, environmentally benign and having a high absorption coefficient are highly promising materials for energy conversion applications. However, producing these materials especially tetrahedrite in the phase pure form is a challenging task. In this report we present a structurally characterized single source molecular precursor [Sb(4,6-Me2pymS)3] for the facile synthesis of binary Sb2S3 as well as ternary Cu12Sb4S13 in oleylamine (OAm) at a relatively lower temperature. The as-prepared Sb2S3 and Cu12Sb4S13 nanostructures were thoroughly checked for their phase purity, elemental composition and morphology by powder X-ray diffraction (pXRD), electron dispersive spectroscopy (EDS) and electron microscopy techniques. pXRD and EDS studies confirm the formation of phase pure, crystalline orthorhombic Sb2S3 and cubic Cu12Sb4S13. The SEM, TEM and HRTEM images depict the formation of well-defined nanorods and nearly spherical nanocrystals for Sb2S3 and Cu12Sb4S13, respectively. The Sb2S3 nanorods and Cu12Sb4S13 nanocrystals exhibit an optical bandgap of ∼1.88 and 2.07 eV, respectively, which are slightly blue-shifted relative to their bulk bandgap, indicating the quantum confinement effect. Finally, efficient photoresponsivity and good photo-stability were achieved in the as-prepared Sb2S3 and Cu12Sb4S13 nanostructure-based prototype photo-electrochemical cell, which make them promising candidates for alternative low-cost photon absorber materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...