Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(6): 243, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700700

RESUMO

The antibacterial effect of nanoparticles is mainly studied on the ensembles of the bacteria. In contrast, the optical tweezer technique allows the investigation of similar effects on individual bacterium. E. coli is a self-propelled micro-swimmer and ATP-driven active microorganism. In this work, an optical tweezer is employed to examine the mechanical properties of E. coli incubated with ZnO and Ag nanoparticles (NP) in the growth medium. ZnO and Ag NP with a concentration of 10 µg/ml were dispersed in growth medium during active log-growth phase of E. coli. This E. coli-NP incubation is further continued for 12 h. The E. coli after incubation for 2 h, 6 h and 12 h were separately studied by the optical tweezer for their mechanical property. The IR laser (λ = 975 nm; power = 100 mW) was used for trapping the individual cells and estimated trapping force, trapping stiffness and corner frequency. The optical trapping force on E. coli incubated in nanoparticle suspension shows linear decreases with incubation time. This work brings the importance of optical trapping force measurement in probing the antibacterial stress due to nanoparticles on the individual bacterium.


Assuntos
Antibacterianos , Escherichia coli , Nanopartículas Metálicas , Pinças Ópticas , Prata , Óxido de Zinco , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia
2.
Life Sci Space Res (Amst) ; 30: 1-8, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281660

RESUMO

Continuous rotation of liquid bacterial culture in random positioning machine (RPM) causes formation of a colloidal bacterial culture in the culture tube, due to lack of sedimentation and convection. Interestingly, similar colloidal bacterial cultures can also be seen in suspended bacterial cultures in a spaceflight environment. Thus, as a consequence of no sedimentation, an alteration in the microenvironment of each bacterial cell in simulated microgravity is introduced, compared to the bacterial culture grown in normal gravity wherein they sediment slowly at the bottom of the culture tube. Apparently, a bacterial cell can sense changes in its environment through various receptors and sensors present at its surface, thus it can be speculated that this change in its microenvironment might induce changes in its cell wall and cell surface properties. In our study, changes in growth kinetics, cell wall constitution using FTIR (Fourier Transform Infrared Spectroscopy), cell surface hydrophobicity, autoaggregation ability and antibiotic susceptibility of Staphylococcus aureus NCIM 2079 strain, in simulated microgravity (using RPM) was studied in detail. Noteworthy alterations in its growth kinetics, cell wall constitution, cell surface hydrophobicity, autoaggregation ability and antibiotic susceptibility especially to Erythromycin and Clindamycin were observed. Our data suggests that microgravity may cause alterations in the cellular envelope of planktonic S.aureus cultures.


Assuntos
Voo Espacial , Ausência de Peso , Parede Celular , Staphylococcus aureus , Simulação de Ausência de Peso
3.
J Basic Microbiol ; 56(11): 1140-1158, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27436796

RESUMO

Lactic acid bacteria are generally believed to have positive roles in maintaining good health and immune system in humans. A number of Lactobacilli spp. are known to produce important metabolites, among which biosurfactants in particular have shown antimicrobial activity against several pathogens in the intestinal tract and female urogenital tract partly through interfering with biofilm formation and adhesion to the epithelial cells surfaces. Around 46 reports are documented on biosurfactant production from Lactobacillus spp. of which six can be broadly classified as cell free biosurfactant and 40 as cell associated biosurfactants and only approximately 50% of those have reported on the structural composition which, in order of occurrence were mainly proteinaceous, glycolipidic, glycoproteins, or glycolipopeptides in nature. Due to the proteinaceous nature, most biosurfactant produced by strains of Lactobacillus are generally believed to be surlactin type with high potential toward impeding pathogens adherence. Researchers have recently focused on the anti-adhesive and antibiofilm properties of Lactobacilli-derived biosurfactants. This review briefly discusses the significance of Lactobacilli-derived biosurfactants and their potential applications in various fields. In addition, we highlight the exceptional prospects and challenges in fermentation economics of Lactobacillus spp.-derived biosurfactants' production processes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Glicolipídeos/química , Glicolipídeos/metabolismo , Lactobacillus/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Biofilmes , Pesquisa Biomédica , Células Epiteliais/microbiologia , Escherichia coli/efeitos dos fármacos , Feminino , Fermentação , Glicolipídeos/isolamento & purificação , Glicolipídeos/farmacologia , Glicoproteínas/química , Glicoproteínas/isolamento & purificação , Glicoproteínas/metabolismo , Glicoproteínas/farmacologia , Humanos , Lactobacillus/química , Tensoativos/isolamento & purificação , Tensoativos/farmacologia
4.
Indian J Exp Biol ; 48(5): 518-23, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20795371

RESUMO

Magnetotactic bacteria (MTB), Magnetospirillum magnetotacticum (MS-1) were successfully grown in modified magnetic spirillum growth medium (MSGM) at normal laboratory environment. About five-time increase in the bacterial yield was achieved in the modified MSGM medium without compromising their magnetosomes properties. Transmission electron and scanning electron microscopy (TEM & SEM) were used for morphological study of MTB. Energy dispersive analysis of X-rays (EDAX) and vibrating sample magnetometer (VSM) techniques, respectively, were used to elucidate the phase and magnetization in the bacterially synthesized magnetosomes. These studies were important to cross-check the morphology of magnetosomes, as the formation of magnetosomes was highly sensitive to environmental conditions.


Assuntos
Meios de Cultura/farmacologia , Magnetossomos/fisiologia , Magnetospirillum/efeitos dos fármacos , Técnicas Bacteriológicas , Microanálise por Sonda Eletrônica , Óxido Ferroso-Férrico/análise , Magnetismo , Magnetossomos/ultraestrutura , Magnetospirillum/fisiologia , Magnetospirillum/ultraestrutura , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...