Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Biol (Stuttg) ; 14(1): 88-99, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21972867

RESUMO

Acclimation of foliage photosynthetic properties occurs with varying time kinetics, but structural, chemical and physiological factors controlling the kinetics of acclimation are poorly understood, especially in field environments. We measured chlorophyll fluorescence characteristics, leaf total carotenoid (Car), chlorophyll (Chl) and nitrogen (N) content and leaf dry mass per area (LMA) along vertical light gradients in natural canopies of the herb species, Inula salicina and Centaurea jacea, and tree species, Populus tremula and Tilia cordata, in the middle of the growing season. Presence of stress was assessed on the basis of night measurements of chlorophyll fluorescence. Our aim was to compare the light acclimation of leaf traits, which respond to light availability at long (LMA and N), medium (Chl a/b ratio, Car/Chl ratio) and short time scales (fluorescence characteristics). We found that light acclimation of nitrogen content per unit leaf area (N(area)), chlorophyll content per unit dry mass (Chl(mass)) and Chl/N ratio were related to modifications in LMA. The maximum PSII quantum yield (F(v) /F(m)) increased with increasing growth irradiance in I. salicina and P. tremula but decreased in T. cordata. Leaf growth irradiance, N content and plant species explained the majority of variability in chlorophyll fluorescence characteristics, up to 90% for steady-state fluorescence yield, while the contribution of leaf total carotenoid content was generally not significant. Chlorophyll fluorescence characteristics did not differ strongly between growth forms, but differed among species within a given growth form. These data highlight that foliage acclimation to light is driven by interactions between traits with varying time kinetics.


Assuntos
Carotenoides/metabolismo , Clorofila/metabolismo , Populus/metabolismo , Tilia/metabolismo , Árvores/metabolismo , Aclimatação , Centaurea/metabolismo , Estônia , Fluorescência , Inula/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
2.
Tree Physiol ; 21(12-13): 899-914, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11498337

RESUMO

We used chlorophyll fluorescence techniques to investigate responses of Photosystem II (PSII) quantum yield to light availability in the short term (quantum flux density integrated over the measurement day, Qd) and in the long term (Qd averaged over the season, Qs) in a mixed deciduous forest comprising shade-tolerant and water-stress-sensitive Tilia cordata Mill. in the lower canopy and shade-intolerant and water-stress-resistant Populus tremula L. in the upper canopy. In both species, intrinsic efficiency of PSII in the dark-adapted state (Fv/Fm) was lower during the day than during the night, and the difference in Fv/Fm between day and night increased with increasing Qs. Although the capacity for photosynthetic electron transport increased with increasing Qs in both species, maximum quantum efficiency of PSII in the light-adapted state (alpha) decreased with increasing Qs. At a common Qs, alpha was lower in T. cordata than in P. tremula primarily because of a higher fraction of closed PSII centers, and to a smaller extent because of limited, non-radiative, excitation energy dissipation in the pigment bed in T. cordata. Across both species, photochemical quenching (qP), which measures the openness of PSII centers, varied more than fivefold, but the efficiency of excitation energy capture by open PSII centers (Fv'/Fm'), which is an estimate of non-radiative excitation energy dissipation in PSII antennae, varied by only 50%. Chlorophyll turnover rates increased with increasing irradiance, especially in T. cordata, possibly because of increased photodestruction. Diurnal measurements of PSII quantum yields (PhiPSII) indicated that, under similar environmental conditions, PhiPSII was always lower in the afternoon than in the morning, and the fraction of daily integrated photosynthetic electron transport lost because of diurnal declines in PhiPSII (Delta) increased with increasing Qd. At a common Qd, mean daily PSII center reduction state, the fraction of light in excess (1 - fractions of light used in photochemistry and dissipated as heat) and Delta were higher in T. cordata than in P. tremula. This was attributed to greater stomatal closure during the day, which led to a greater reduction in the requirement for assimilative electron flow in T. cordata. Across both species, Delta scaled negatively with the fraction of light utilized photochemically, demonstrating the leading role of PSII center openness in maintaining high PSII efficiency. Because photosynthesis (A) at current ambient carbon dioxide concentration is limited by CO2 availability in high light and mainly by photosynthetic electron transport rates in low light, overall daily down-regulation of PhiPSII primarily influences A in low light. Given that foliar water stress scales positively with Qs in both species, we conclude that the inverse patterns of variation in water and light availabilities in the canopy result in a greater decline in A than is predicted by decreases in stomatal conductance alone.


Assuntos
Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Árvores/fisiologia , Clorofila/fisiologia , Ritmo Circadiano/fisiologia , Transporte de Elétrons/fisiologia , Estônia , Luz , Complexos de Proteínas Captadores de Luz , Complexo de Proteína do Fotossistema II , Folhas de Planta/fisiologia
3.
Tree Physiol ; 19(13): 839-852, 1999 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-10562401

RESUMO

We studied limitations caused by variations in leaf temperature and soil water availability on photosynthetic electron transport rates calculated from foliar chlorophyll fluorescence analysis (U) in a natural deciduous forest canopy composed of shade-intolerant Populus tremula L. and shade-tolerant Tilia cordata Mill. In both species, there was a positive linear relationship between light-saturated U (Umax) per unit leaf area and mean seasonal integrated daily quantum flux density (Ss, mol per square m per day). Acclimation of leaf dry mass per area and nitrogen per area to growth irradiance largely accounted for this positive scaling. However, the slopes of the Umax versus Ss relationships were greater on days when leaf temperature was high than on days when leaf temperature was low. Overall, Umax varied 2.5-fold across a temperature range of 20-30 degrees C. Maximum stomatal conductance (Gmax) also scaled positively with Ss. Although Gmax observed during daily time courses, and stomatal conductances during Umax measurements declined in response to seasonally decreasing soil water contents, was insensitive to prolonged water stress, and was not strongly correlated with stomatal conductances during its estimation. These results suggest that photorespiration was an important electron sink when intercellular CO2 concentration was low because of closed stomata. Given that xanthophyll cycle pool size (VAZ, sum of violaxanthin, antheraxanthin, and zeaxanthin) may play an important role in dissipation of excess excitation energy, the response of VAZ to fluctuating light and temperature provided another possible explanation for the stable Umax. Xanthophyll cycle carotenoids per total leaf chlorophyll (VAZ/Chl) scaled positively with integrated light and negatively with daily minimum air temperature, whereas the correlation between VAZ/Chl and irradiance was best with integrated light averaged over 3 days preceding foliar sampling. We conclude that the potential capacity for electron transport is determined by long-term acclimation of U to certain canopy light conditions, and that the rapid adjustment of the capacity for excitation energy dissipation plays a significant part in the stabilization of this potential capacity. Sustained high capacity of photosynthetic electron transport during stress periods provides an explanation for the instantaneous response of U to short-term weather fluctuations, but also indicates that U restricts potential carbon gain under conditions of water limitation less than does stomatal conductance.

4.
Int J Plant Sci ; 160(5): 837-848, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10506464

RESUMO

Morphology, chemical composition, and photosynthetic capacity of leaf laminas were investigated in Populus tremula L. and Tilia cordata Mill. along a canopy light gradient. Variables determining the thickness of boundary layer for heat and water exchange at a given wind speed-effective leaf width (Ww) and length (Wd)-scaled positively with daily integrated quantum flux density averaged over the season (Qint, mol m-2 d-1) in T. cordata, but Wd decreased and Ww was constant with increasing Qint in P. tremula, bringing about a moderately improved capacity for convective cooling at greater irradiances in the latter species. Foliar stable carbon isotope discrimination (Delta) decreased with increasing Qint, demonstrating that, possibly because of more severe foliar water stress, leaves operated at a lower intercellular CO2 concentration in the upper canopy. Further analysis of foliar characteristics provided additional evidence of the interaction between water stress and Qint. Leaf dry matter content and both components of lamina dry mass per area (MA)-lamina thickness and density (dry mass per unit volume, rhoB)-increased with increasing Qint in both species. The rhoB and lamina dry matter content were also positively related to lamina carbon concentration, variability in which along the canopy was related to changes in carbon-rich lignin concentration. Since both increases in lamina density and lignin concentration improve leaf tolerance of low-water potentials, these foliar modifications were interpreted as indicative of acclimation to enhanced water limitations in high light. For the whole material, foliar nitrogen concentrations decreased with increasing rhoB, suggesting that an improvement of foliar mechanical strength may result in declining foliar assimilative potential. However, foliar photosynthetic electron transport capacity per unit area increased with increasing rhoB, possibly because increases in rhoB with light are not only attributable to greater cell wall lignification but also to denser packing of leaf cells, in particular, in fractional increases in palisade tissues with Qint. Because of a positive scaling of leaf thickness and density with total tree height, MA was greater in taller trees of T. cordata, foliage of which also had lower Delta and was likely to function with less open stomata. In summary, we conclude that leaf water stress, which scales with both Qint and total tree height, is a major factor altering foliage structure and assimilative capacity.

5.
Tree Physiol ; 15(5): 307-15, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-14965954

RESUMO

Needle dimensions, needle surface area, needle dry weight per area (LWA) and needle density (ND, needle weight per volume) were measured in terminal current-year shoots in a natural canopy of variably sized Picea abies (L.) Karst. trees growing along a light gradient. Needle shape was described as a rhomboid. Needle width (D(2)) increased with increasing diffuse site factor, a(d) (relative amount of penetrating diffuse solar radiation), whereas needle thickness (D(1)) remained nearly constant, resulting in an inverse relationship between D(1)/D(2) and a(d) and an increase in the ratio of total (TLA) to projected needle surface area (PLA) with increasing a(d). Because of the variations in needle morphology with respect to light availability, the shoot parameters used in present canopy models are also expected to be light-sensitive, and studies involving shoot morphology should also consider the variability in needle geometry. Needle dimensions and total tree height were not correlated. However, LWA increase with both increasing a(d) and total tree height. When LWA was expressed as the product of ND and needle height (NH, height of the rhomboidal transverse section of a needle), LWA appeared to increase with irradiance, because of changing NH, and with total tree height, because of changing needle density.

6.
Tree Physiol ; 12(3): 311-8, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14969921

RESUMO

Relations between leaf dry weight to leaf area (LWA), leaf nitrogen concentration and irradiance inside a natural canopy were studied in Betula pendula Roth., Corylus avellana L. and Lonicera xylosteum L. In all species, LWA increased with increasing irradiance. Relative variability in LWA was smaller in Betula pendula than in the other two species. In Corylus avellana, LWA also depended on total plant height. Foliar nitrogen concentration (on a dry weight basis) increased with increasing irradiance and LWA in Betula pendula, but decreased in the other two species. The interspecific variation in response to light availability and in nitrogen partitioning may be caused by different light demands or different life forms (trees versus shrubs), or both, of the species examined, and must be considered in contemporary canopy models.

7.
Environ Pollut ; 74(3): 251-61, 1991.
Artigo em Inglês | MEDLINE | ID: mdl-15092065

RESUMO

Shoots of a soil- or sand-grown dwarf bean variety were exposed to O(3) concentrations in the range of 500 to 900 ppb for up to 5 h. The measured exchange rates of water vapor and CO(2) during exposures were used to calculate stomatal and mesophyll conductances averaged across all leaves. Changes in conductances were related to exposure duration and absorbed O(3) totals (AOT). Both conductances were more sensitive to AOT in sand-grown plants, which also had more visible injury under comparable AOT values. Measurements of the relationship between CO(2) exchange and internal CO(2) concentration of single leaflets of treated plants also showed greater sensitivity of CO(2)-saturated photosynthesis in sand-grown plants. Diffusional processes were not likely to have been the cause of dissimilar responses because the O(3) absorption rate was lower in sand-grown plants. A difference in the scaveninng capacities in cells is suggested to be the cause of the differences in sensitivity to acute O(3) exposure.

8.
Plant Physiol ; 90(3): 1163-7, 1989 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16666867

RESUMO

Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly by supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...