Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Neurourol J ; 26(2): 111-118, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35793989

RESUMO

PURPOSE: Lower urinary tract symptoms are known to significantly increase with age, negatively impacting quality of life and self-reliance. The urothelium fulfills crucial tasks, serving as a barrier protecting the underlying bladder tissue from the harsh chemical composition of urine, and exhibits signaling properties via the release of mediators within the bladder wall that affect bladder functioning. Aging is associated with detrimental changes in cellular health, in part by increasing oxidative stress in the bladder mucosa, and more specifically the urothelium. This, in turn, may impact urothelial mitochondrial health and bioenergetics. METHODS: We collected mucosal tissue samples from both young (3-4 months old) and aged (25-30 months old) rats. Tissue was evaluated for p21-Arc, nitrotyrosine, and cytochrome C expression by western immunoblotting. Urothelial cells were cultured for single-cell imaging to analyze basal levels of reactive oxygen species and the mitochondrial membrane potential. Mitochondrial bioenergetics and cellular respiration were investigated by the Seahorse assay, and measurements of adenosine triphosphate release were made using the luciferin-luciferase assay. RESULTS: Aging was associated with a significant increase in biomarkers of cellular senescence, oxidative stress, and basal levels of reactive oxygen species. The mitochondrial membrane potential was significantly lower in urothelial cell cultures from aged animals, and cultures from aged animals showed a significant decrease in mitochondrial bioenergetics. CONCLUSION: Aging-related increases in oxidative stress and excessive reactive oxygen species may be contributing factors underlying lower urinary tract symptoms in older adults. The mechanisms outlined in this study could be utilized to identify novel pharmaceutical targets to improve aging-associated bladder dysfunction.

2.
Int Neurourol J ; 26(4): 299-307, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36599338

RESUMO

PURPOSE: Substantive evidence supports a role of chronic stress in the development, maintenance, and even enhancement of functional bladder disorders such as interstitial cystitis/bladder pain syndrome (IC/BPS). Increased urinary frequency and bladder hyperalgesia have been reported in rodents exposed to a chronic stress paradigm. Here, we utilized a water avoidance stress (WAS) model in rodents to investigate the effect of chronic stress on vascular perfusion and angiogenesis. METHODS: Female Wistar-Kyoto rats were exposed to WAS for 10 consecutive days. Bladder neck tissues were analyzed by western immunoblot for vascular endothelial growth factor (VEGF) and nerve growth factor precursor (proNGF). Vascular perfusion was assessed by fluorescent microangiography followed by Hypoxyprobe testing to identify regions of tissue hypoxia. RESULTS: The expression of VEGF and proNGF in the bladder neck mucosa was significantly higher in the WAS rats than in the controls. There was a trend toward increased vascular perfusion, but without a statistically significant difference from the control group. The WAS rats displayed a 1.6-fold increase in perfusion. Additionally, a greater abundance of vessels was observed in the WAS rats, most notably in the microvasculature. CONCLUSION: These findings show that chronic psychological stress induces factors that can lead to increased microvasculature formation, especially around the bladder neck, the region that contains most nociceptive bladder afferents. These findings may indicate a link between angiogenesis and other inflammatory factors that contribute to structural changes and pain in IC/BPS.

3.
Neurourol Urodyn ; 38(6): 1551-1559, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102563

RESUMO

AIM: To characterize the effects of acute spinal cord injury (SCI) on mitochondrial morphology and function in bladder urothelium and to test the therapeutic efficacy of early treatment with the mitochondrially targeted antioxidant, MitoTempo. METHODS: We used a mouse model of acute SCI by spinal cord transection between the T8-T9 vertebrae with or without MitoTempo delivery at the time of injury followed by tissue processing at 3 days after SCI. Control, SCI, and SCI-MitoTempo-treated mice were compared in all experimental conditions. Assessments included analysis of markers of mitochondrial health including accumulation of reactive oxygen species (ROS), morphological changes in the ultrastructure of mitochondria by transmission electron microscopy, and Western blot analysis to quantify protein levels of markers for autophagy and altered mitochondrial dynamics. RESULTS: SCI resulted in an increase in oxidative stress markers and ROS production, confirming mitochondrial dysfunction. Mitochondria from SCI mice developed large electron-dense inclusions and these aberrant mitochondria accumulated throughout the cytoplasm suggesting an inability to clear dysfunctional mitochondria by mitophagy. SCI mice also exhibited elevated levels of dynamin-related protein 1 (DRP1), consistent with a disruption of mitochondrial dynamics. Remarkably, treatment with MitoTempo reversed many of the SCI-induced abnormalities that we observed. CONCLUSIONS: Acute SCI negatively and severely affects mitochondrial health of bladder urothelium. Early treatment of SCI with MitoTempo may be a viable therapeutic agent to mitigate these deleterious effects.


Assuntos
Doenças Mitocondriais/etiologia , Doenças Mitocondriais/metabolismo , Traumatismos da Medula Espinal/metabolismo , Urotélio/metabolismo , Doença Aguda , Animais , Antioxidantes/farmacologia , Apoptose , Autofagia , Dinaminas/biossíntese , Dinaminas/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Compostos Organofosforados/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Piperidinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
4.
Asian J Urol ; 5(3): 135-140, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29988876

RESUMO

Alterations in bladder function with aging are very common and are very likely to represent an increasing healthcare problem in the years to come with the general aging of the population. In this review the authors describe the prevalence of lower urinary tract symptoms (LUTS) and comment upon potential mechanisms which may be responsible for the increasing prevalence of lower LUTS with increasing age, based on laboratory studies. It is clear that there is a complex interplay between the various components of the neural innervation structure of the bladder in leading to changes with age, which are likely to underpin the LUTS which are seen in the aging bladder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...