Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scand J Med Sci Sports ; 27(9): 956-963, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27292352

RESUMO

This study investigated the whole body frontal plane mechanics among young (26 ± 6 years), early old (61 ± 5 years), and old (78 ± 4 years) adults during walking, running, and sprinting. The age-groups had similar walking (1.6 m/s) and running (4.0 m/s) speeds, but different maximal sprinting speed (young 9.3 m/s, early old 7.9 m/s, and old 6.6 m/s). Surprisingly, although the old group exerted much lower vertical ground reaction force during running and sprinting, the hip frontal plane moment did not differ between the age-groups. Kinematic analysis demonstrated increased hip adduction and pelvis drop, as well as reduced trunk lateral flexion among old adults, especially during sprinting. These alterations in the hip and pelvis motions may reflect insufficient force production of hip abductors to stabilize the pelvis during single-limb support, while limited trunk lateral flexion may enhance control of the mediolateral balance. On the other hand, larger trunk side-to-side movement among the young and early old adults may provide a mechanism to prevent the increase of the hip frontal moment despite greater vertical ground reaction force. This, in turn, can assist hip abductors to maintain stability of the pelvis during sprinting while allowing powerful force generation by a large adductor muscle group.


Assuntos
Marcha/fisiologia , Corrida/fisiologia , Caminhada/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos , Articulação do Quadril/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Pelve , Amplitude de Movimento Articular , Análise Espaço-Temporal , Tronco , Adulto Jovem
2.
J Biomech Eng ; 138(7)2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27138135

RESUMO

In finite-element (FE) models of the knee joint, patella is often omitted. We investigated the importance of patella and quadriceps forces on the knee joint motion by creating an FE model of the subject's knee. In addition, depthwise strains and stresses in patellar cartilage with different tissue properties were determined. An FE model was created from subject's magnetic resonance images. Knee rotations, moments, and translational forces during gait were recorded in a motion laboratory and used as an input for the model. Three material models were implemented into the patellar cartilage: (1) homogeneous model, (2) inhomogeneous (arcadelike fibrils), and (3) random fibrils at the superficial zone, mimicking early stages of osteoarthritis (OA). Implementation of patella and quadriceps forces into the model substantially reduced the internal-external femoral rotations (versus without patella). The simulated rotations in the model with the patella matched the measured rotations at its best. In the inhomogeneous model, maximum principal stresses increased substantially in the middle zone of the cartilage. The early OA model showed increased compressive strains in the superficial and middle zones of the cartilage and decreased stresses and fibril strains especially in the middle zone. The results suggest that patella and quadriceps forces should be included in moment- and force-driven FE knee joint models. The results indicate that the middle zone has a major role in resisting shear forces in the patellar cartilage. Also, early degenerative changes in the collagen network substantially affect the cartilage depthwise response in the patella during walking.


Assuntos
Cartilagem Articular/fisiologia , Marcha/fisiologia , Articulação do Joelho/fisiologia , Modelos Biológicos , Contração Muscular/fisiologia , Patela/fisiologia , Músculo Quadríceps/fisiologia , Adulto , Simulação por Computador , Humanos , Masculino , Amplitude de Movimento Articular/fisiologia , Estresse Mecânico , Resistência à Tração , Suporte de Carga/fisiologia
3.
Int J Sports Med ; 37(4): 334-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26701826

RESUMO

Poor knee alignment is associated with increased loading of the joints, ligaments and tendons, and may increase the risk of injury. The study purpose was to compare differences in knee kinematics between basketball and floorball players during a vertical drop jump (VDJ) task. We wanted to investigate whether basketball players, whose sport includes frequent jump-landings, exhibited better knee control compared with floorball players, whose sport involves less jumping. Complete data was obtained from 173 basketball and 141 floorball players. Peak knee valgus and flexion angles during the VDJ were analyzed by 3D motion analysis.Larger knee valgus angles were observed among basketball players (- 3.2°, 95%CI -4.5 to - 2.0) compared with floorball players (- 0.9°, 95%CI -2.3 to 0.6) (P=0.022). Basketball players landed with a decreased peak knee flexion angle (83.1°, 95%CI 81.4 to 84.8) compared with floorball players (86.5°, 95%CI 84.6 to 88.4) (P=0.016). There were no significant differences in height, weight or BMI between basketball and floorball players. Female athletes exhibited significantly greater valgus angles than males. This study revealed that proper knee control during jump-landing does not seem to develop in young athletes simply by playing the sport, despite the fact that jump-landings occur frequently in practice and games.


Assuntos
Basquetebol , Articulação do Joelho/fisiologia , Amplitude de Movimento Articular , Esportes , Adolescente , Atletas , Fenômenos Biomecânicos , Criança , Feminino , Humanos , Traumatismos do Joelho/prevenção & controle , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...