Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(4): 480, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930328

RESUMO

An accurate investigation of bio-physical and chemical parameters as proxy of in situ water quality conditions in the Himalayan region is highly challenging owing to cumbersome, strenuous, and physically exhausting sampling exercises at high altitude locations. The upper stretches of Yamuna River in the Himachal Pradesh are typical examples of such sampling locations that have rarely been examined in the past studies. A widely accepted and recognized QUAL 2Kw model is applied for estimating the water quality parameters on the upper segment of the Yamuna River from Paonta Sahib to Cullackpur. These water quality indicators mainly included electric conductivity, pH, dissolved oxygen, temperature, carbonaceous biological oxygen demand (CBOD), inorganic suspended solids, total nitrogen, total phosphorus, and alkalinity, which were systematically investigated for predicting the spatio-temporal trends during the year 2018. A total of 12 distantly located river sites were identified for sample collection and data validation using QUAL 2Kw model. The present investigation attempts to reveal long-term degraded impact of untreated wastewater and biased agricultural practices on the water quality conditions over the upper stretches of Yamuna River. The QUAL 2Kw-derived values for selected variables were inter-compared with in situ values, and any deviation from measured values was ascertained based on meaningful statistical measures. The lower error of RMSE, MRE, and BIAS, corresponding to < 15%, ± 10%., ± 20%, and ~ 1 slope evidently indicated better matchup of values, wherein, higher slope correlation coefficient (R2) of ~ 90% indicated the robust performance of the QUAL 2Kw algorithm in accurately predicting the chosen variables. A comparative assessment of QUAL 2Kw and WASP has been performed to justify aptness of water quality model in scenarios of lean flow.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental , Análise da Demanda Biológica de Oxigênio , Águas Residuárias , Índia , Poluentes Químicos da Água/análise
2.
Environ Monit Assess ; 189(4): 199, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28361489

RESUMO

An optical method is developed to estimate water transparency (or underwater visibility) in terms of Secchi depth (Z sd ), which follows the remote sensing and contrast transmittance theory. The major factors governing the variation in Z sd , namely, turbidity and length attenuation coefficient (1/(c + K d ), c = beam attenuation coefficient; K d  = diffuse attenuation coefficient at 531 nm), are obtained based on band rationing techniques. It was found that the band ratio of remote sensing reflectance (expressed as (R rs (443) + R rs (490))/(R rs (555) + R rs (670)) contains essential information about the water column optical properties and thereby positively correlates to turbidity. The beam attenuation coefficient (c) at 531 nm is obtained by a linear relationship with turbidity. To derive the vertical diffuse attenuation coefficient (K d ) at 531 nm, K d (490) is estimated as a function of reflectance ratio (R rs (670)/R rs (490)), which provides the bio-optical link between chlorophyll concentration and K d (531). The present algorithm was applied to MODIS-Aqua images, and the results were evaluated by matchup comparisons between the remotely estimated Z sd and in situ Z sd in coastal waters off Point Calimere and its adjoining regions on the southeast coast of India. The results showed the pattern of increasing Z sd from shallow turbid waters to deep clear waters. The statistical evaluation of the results showed that the percent mean relative error between the MODIS-Aqua-derived Z sd and in situ Z sd values was within ±25%. A close agreement achieved in spatial contours of MODIS-Aqua-derived Z sd and in situ Z sd for the month of January 2014 and August 2013 promises the model capability to yield accurate estimates of Z sd in coastal, estuarine, and inland waters. The spatial contours have been included to provide the best data visualization of the measured, modeled (in situ), and satellite-derived Z sd products. The modeled and satellite-derived Z sd values were compared with measurement data which yielded RMSE = 0.079, MRE = -0.016, and R 2  = 0.95 for the modeled Z sd and RMSE = 0.075, MRE = 0.020, and R 2  = 0.95 for the satellite-derived Z sd products.


Assuntos
Monitoramento Ambiental/métodos , Tecnologia de Sensoriamento Remoto , Água/análise , Algoritmos , Clorofila/análise , Índia , Modelos Teóricos
3.
Environ Monit Assess ; 187(12): 742, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26559556

RESUMO

Accurate estimation of water clarity in coastal regions is highly desired by various activities such as search and recovery operations, dredging and water quality monitoring. This study intends to develop a practical method for estimating water clarity based on a larger in situ dataset, which includes Secchi depth (Z sd ), turbidity, chlorophyll and optical properties from several field campaigns in turbid coastal waters. The Secchi depth parameter is found to closely vary with the concentration of suspended sediments, vertical diffuse attenuation coefficient K d (m(-1)) and beam attenuation coefficient c (m(-1)). The optical relationships obtained for the selected wavelengths (i.e. 520, 530 and 540 nm) exhibit an inverse relationship between Secchi depth and the length attenuation coefficient (1/(c + K d )). The variation in Secchi depth is expressed in terms of undetermined coupling coefficient which is composed of light penetration factor (expressed by z(1%)K d (λ)) and a correction factor (ξ) (essentially governed by turbidity of the water column). This method of estimating water clarity was validated using independent in situ data from turbid coastal waters, and its results were compared with those obtained from the existing methods. The statistical analysis of the measured and the estimated Z sd showed that the present method yields lower error when compared to the existing methods. The spatial structures of the measured and predicted Z sd are also highly consistent with in situ data, which indicates the potential of the present method for estimating the water clarity in turbid coastal and associated lagoon waters.


Assuntos
Monitoramento Ambiental/métodos , Poluição da Água/estatística & dados numéricos , Clorofila/análise , Luz , Poluição da Água/análise , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...