Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(2): 02A901, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931962

RESUMO

Calcium and lithium ion beams are required by NASA Space Radiation Laboratory at Brookhaven National Laboratory to simulate the effects of cosmic radiation. To identify the difficulties in providing such highly reactive materials as laser targets, both species were experimentally tested. Plate shaped lithium and calcium targets were fabricated to create ablation plasmas with a 6 ns 1064 nm neodymium-doped yttrium aluminum garnet laser. We found significant oxygen contamination in both the Ca and Li high charge state beams due to the rapid oxidation of the surfaces. A large spot size, low power density laser was used to create low charge state beams without scanning the targets. The low charge state Ca beam did not have any apparent oxygen contamination, showing the potential to clean the target entirely of oxide with a low power beam once in the chamber. The Li target was clearly still oxidizing in the chamber after each low power shot. To measure the rate of oxidation, we shot the low power laser at the target repeatedly at 10 s, 30 s, 60 s, and 120 s interval lengths, showing a linear relation between the interval time and the amount of oxygen in the beam.

2.
Rev Sci Instrum ; 87(2): 02A906, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931967

RESUMO

We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam.

3.
Rev Sci Instrum ; 87(2): 02A915, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931976

RESUMO

In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

4.
Rev Sci Instrum ; 87(2): 02A916, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931977

RESUMO

We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

5.
Rev Sci Instrum ; 87(2): 02A920, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931981

RESUMO

Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

6.
Rev Sci Instrum ; 85(2): 02B916, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593621

RESUMO

Multiple laser shots could be used to elongate an ion beam pulse width or to intensify beam current from laser ion sources. In order to confirm the feasibility of the multiple shot scheme, we investigated the properties of plasmas produced by double laser shots. We found that when the interval of the laser shots is shorter than 10 µs, the ion current profile had a prominent peak, which is not observed in single laser experiments. The height of this peak was up to five times larger than that of single laser experiment.

7.
Rev Sci Instrum ; 85(2): 02B924, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24593629

RESUMO

To investigate efficient graphite material for carbon ion production in laser ion source, the plasma properties produced from these materials are measured. Comparing acquired current profile and charge state distribution, the distributions of ions in laser induced plasma from isotropic graphite and single crystal of graphite are different. The produced quantity of C(6+) from isotropic materials is larger than that from single crystal.


Assuntos
Grafite/química , Lasers , Modelos Moleculares , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...