Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37237688

RESUMO

With the growing interest in bioplastics, there is an urgent need to develop rapid analysis methods linked to production technology development. This study focused on the production of a commercially non-available homopolymer, poly(3-hydroxyvalerate) (P(3HV)), and a commercially available copolymer, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)), through fermentation using two different bacterial strains. The bacteria Chromobacterium violaceum and Bacillus sp. CYR1 were used to produce P(3HV) and P(3HB-co-3HV), respectively. The bacterium Bacillus sp. CYR1 produced 415 mg/L of P(3HB-co-3HV) when incubated with acetic acid and valeric acid as the carbon sources, whereas the bacterium C. violaceum produced 0.198 g of P(3HV)/g dry biomass when incubated with sodium valerate as the carbon source. Additionally, we developed a fast, simple, and inexpensive method to quantify P(3HV) and P(3HB-co-3HV) using high-performance liquid chromatography (HPLC). As the alkaline decomposition of P(3HB-co-3HV) releases 2-butenoic acid (2BE) and 2-pentenoic acid (2PE), we were able to determine the concentration using HPLC. Moreover, calibration curves were prepared using standard 2BE and 2PE, along with sample 2BE and 2PE produced by the alkaline decomposition of poly(3-hydroxybutyrate) and P(3HV), respectively. Finally, the HPLC results obtained by our new method were compared using gas chromatography (GC) analysis.

2.
Bioenergy Res ; 16(1): 16-32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35350609

RESUMO

Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential. Among them, municipal solid wastes can be used as the source of substrates for the production of commercially viable gaseous and liquid fuels, as well as short-chain fattyacids and carboxylic acids. In this work, technologies and processes demanding the production of value-added products were explained in detail to understand and inculcate the value of municipal solid wastes and the economy, and it can provide to the biorefinery aspect.

3.
Sci Total Environ ; 861: 160440, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36436638

RESUMO

Electrochemical based approaches for the treatment of recalcitrant water borne pollutants are known to exhibit superior function in terms of efficiency and rate of treatment. Considering the stability of Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are designated as forever chemicals, which generating from various industrial activities. PFAS are contaminating the environment in small concentrations, yet exhibit severe environmental and health impacts. Electro-oxidation (EO) is a recent development that treats PFAS, in which different reactive species generates at anode due to oxidative reaction and reductive reactions at the cathode. Compared to water and wastewater treatment methods those being implemented, electrochemical approaches demonstrate superior function against PFAS. EO completely mineralizes (almost 100 %) non-biodegradable organic matter and eliminate some of the inorganic species, which proven as a robust and versatile technology. Electrode materials, electrolyte concentration pH and the current density applying for electrochemical processes determine the treatment efficiency. EO along with electrocoagulation (EC) treats PFAS along with other pollutants from variety of industries showed highest degradation of 7.69 mmol/g of PFAS. Integrated approach with other processes was found to exhibit improved efficiency in treating PFAS using several electrodes boron-doped diamond (BDD), zinc, titanium and lead based with efficiency the range of 64 to 97 %.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Poluentes da Água , Águas Residuárias , Poluentes Químicos da Água/análise , Oxirredução , Eletrodos , Água
4.
Chemosphere ; 303(Pt 2): 135078, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35644235

RESUMO

Polyhydroxybutyrate (PHB) is a natural polyester that may be made by utilizing volatile fatty acids (VFAs) as a substrate. VFA generated by continuous anaerobic fermentation of waste activated sludge (WAS) was fed into bioreactors for PHB synthesis in this work. Series of optimization tests were conducted to increase the biodegradability and hydrolysis of waste activated sludge. It was found out that 0.05 g/g TS of SDBS (sodium dodecylbenzene sulfonate), 70 °C (heat treatment) and 2hr (time) as pretreatment condition would give the highest solubilization. Impact of pH adjustment on the acidogenesis of pretreated WAS was evaluated in batch experiments at varying initial pH (4-10). The result indicated that when operational pH was between 7.5 and 8, the VFA yield was increased by 5.3-18.1%. Continuous acidogenic operation validated the SDBS pretreatment and pH adjustment warranted stable VFA conversion from WAS at a yield of 47% in COD basis. Firmicutes, Actinobacteria and Proteobacteria were affiliated as dominant bacterial phyla in the continuous acidogenesis. The effluent of the continuous acidogenesis was converted to biopolymer with the average yields of 0.23 g PHB-COD/g VFAadded-COD in the feast mode and 0.34 g PHB-COD/g VFAadded-COD in the famine mode. In feast and famine cycle, the average VFA utilization was 55% and 60% respectively. The sequential SDBS pretreatment, acidogenesis and PHB production would produce 162 g of PHB from 1 kg of WAS as COD basis.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Ácidos , Bactérias , Biopolímeros , Reatores Biológicos , Fermentação , Concentração de Íons de Hidrogênio , Compostos Orgânicos , Esgotos/microbiologia
5.
Chemosphere ; 279: 130563, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134408

RESUMO

The study evaluated the preparation of a biocomposite using waste-derived polyhydroxybutyrate (PHB) and bagasse cellulose (α-cellulose) in a biorefinery approach. PHB was produced using dark fermentation effluent rich in volatile fatty acids (VFA) derived from vegetable waste and α-cellulose was extracted from sugarcane bagasse (SCB). Nutrient limitation induced microbial PHB accumulation, wherein maximum production of 0.28 ± 0.06 g PHB/g DCW (28%) was observed. Confocal examination showed the deposition of PHB granules in the cell cytoplasm and NMR spectrum exhibited a structural correlation. α-Cellulose (0.22 ± 0.02 g α-cellulose/g SCB) was extracted through SCB pretreatment. Thereafter, grafting α-cellulose with PHB offered intermolecular bonding, which resulted in enhanced thermal stability of the biocomposite than corresponding pristine PHB. FE-SEM morphological examination of biocomposite depicted that α-cellulose functioned as a filler to PHB. XRD profiles showed significant decrement in PHB crystallinity, signifying the functional role of α-cellulose as an effective reinforcing agent. Additionally, ether functional group of α-cellulose and ester group of PHB also appeared in XPS analysis of the composite, thus authorizing the effective blending of α-cellulose and PHB. Utilization of bagasse-derived cellulose for strengthening biologically produced PHB expands its applications, while simultaneously addressing the plastic pollution issues. Additional value from this process was further achieved by incorporating the concept of biorefinery, wherein acidogenic fermentation effluents were used for the production of PHA, which enabled the re-entry of products (VFA) to the production cycle, thus achieving circularity.


Assuntos
Celulose , Saccharum , Ácidos Graxos Voláteis , Fermentação
6.
Bioresour Technol ; 248(Pt A): 2-12, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28823499

RESUMO

Enormous quantity of food waste (FW) is becoming a global concern. To address this persistent problem, sustainable interventions with green technologies are essential. FW can be used as potential feedstock in biological processes for the generation of various biobased products along with its remediation. Enabling bioprocesses like acidogenesis, fermentation, methanogenesis, solventogenesis, photosynthesis, oleaginous process, bio-electrogenesis, etc., that yields various products like biofuels, platform chemicals, bioelectricity, biomaterial, biofertilizers, animal feed, etc can be utilized for FW valorisation. Integrating these bioprocesses further enhances the process efficiency and resource recovery sustainably. Adapting biorefinery strategy with integrated approach can lead to the development of circular bioeconomy. The present review highlights the various enabling bioprocesses that can be employed for the generation of energy and various commodity chemicals in an integrated approach addressing sustainability. The waste biorefinery approach for FW needs optimization of the cascade of the individual bioprocesses for the transformation of linear economy to circular bioeconomy.


Assuntos
Biocombustíveis , Alimentos , Animais , Metabolismo dos Carboidratos , Fermentação
7.
J Hazard Mater ; 343: 49-58, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28941837

RESUMO

The treatment of azo dye wastewater was studied in a periodic discontinuous batch reactor (PDBR) at high loading condition (1250mg/l) under anoxic microenvironments. PDBR performance was evaluated by varying the time period of aerobic microenvironment during the cycle operation [before multiphasing (BMP; Control), 0.014; after multiphasing (AMP): AMPI, 0.84; AMPII, 0.73; AMPIII, 0.65]. Induction of air in anoxic-PDBR facilitated the simultaneous oxidation and reduction conditions and thus resulted higher dye removal efficiency with AMPIII strategy (65%) followed by AMPII (59.4%) and AMPI (54.4%) than the corresponding control operation (BMP: 49.4%). Relatively higher azo reductase enzyme activity was documented with AMP than corresponding BMP operation correlating well with azo dye decolorization. UV- UV-Significant transformational changes of azo dye peaks (618nm) were documented before and after multiphase operations. Cyclic voltammogram profiles depicted increment in redox catalytic currents during AMPIII operation and also supports the involvement of reducing equivalents towards the dye removal. Derivatives of voltammograms illustrated the involvement of various redox mediators viz., cytochrome-C, quinones, Fumarate/Succinate, Fe(CN)63-/Fe(CN)64-, and flavoproteins. Flexibility in phasing the multiple microenvironments in single bioreactor (PDBR) provides new insights in embodying the required capabilities to treat the recalcitrant azo dye wastewater especially at higher dye load operations.


Assuntos
Compostos Azo/metabolismo , Reatores Biológicos , Corantes/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Anaerobiose , Compostos Azo/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Análise da Demanda Biológica de Oxigênio , Cor , Corantes/toxicidade , Ácidos Graxos Voláteis/metabolismo , Oxirredutases/metabolismo , Águas Residuárias , Poluentes Químicos da Água/toxicidade
8.
Bioresour Technol ; 215: 2-12, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27068056

RESUMO

Increased urbanization worldwide has resulted in a substantial increase in energy and material consumption as well as anthropogenic waste generation. The main source for our current needs is petroleum refinery, which have grave impact over energy-environment nexus. Therefore, production of bioenergy and biomaterials have significant potential to contribute and need to meet the ever increasing demand. In this perspective, a biorefinery concept visualizes negative-valued waste as a potential renewable feedstock. This review illustrates different bioprocess based technological models that will pave sustainable avenues for the development of biobased society. The proposed models hypothesize closed loop approach wherein waste is valorised through a cascade of various biotechnological processes addressing circular economy. Biorefinery offers a sustainable green option to utilize waste and to produce a gamut of marketable bioproducts and bioenergy on par to petro-chemical refinery.


Assuntos
Biotecnologia/métodos , Conservação dos Recursos Naturais/métodos , Fontes Geradoras de Energia , Modelos Teóricos , Gerenciamento de Resíduos/métodos , Biocombustíveis , Produtos Agrícolas , Resíduos Sólidos , Resíduos
9.
Parasitol Res ; 112(3): 1053-63, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23263386

RESUMO

Mosquito-borne diseases in India, e.g., malaria, dengue, chikungunya, filariasis, and Japanese encephalitis cause thousands of deaths per year. Mosquito control is to enhance the health and quality of life of county residents and visitors through the reduction of mosquito populations. Mosquito control is of serious concern in developing countries like India due to the lack of general awareness, development of resistance, and socioeconomic reasons. Noble metal nanoparticles have been used because of their unique optical properties; especially gold and silver have a broad absorption band in the visible region of electromagnetic spectrum. Synthesis of gold nanoparticles using Cymbopogan citratus is an ecofriendly approach for safer environment. C. citratus leaf broth was a good reducing agent that converted chloroauric acid (HAuCl(4)) to metal gold and further heating converted it into nanoparticles. Characterization using UV spectrophotometer, X-ray diffraction, Fourier transform infrared spectroscopy, particle size analyzer, and transmission electron microscopy confirmed that the particles are gold nanoparticles ranging between 10 and 110 nm with an average particles size of 20 nm. Further biosynthesized gold nanoparticles and Anthocephalus cadamba were experimented for the larvicidal effect on the filarial vector, Culex quinquefasciatus. Results showed that the gold nanoparticles are much toxic than the plant extract. Observed lethal concentrations (LC(50) and LC(90)) were 1.08 and 2.76 ppm for gold nanoparticles and 21.82 and 79.52 ppm for the third instar of C. quinquefasciatus.


Assuntos
Culex/efeitos dos fármacos , Ouro/farmacologia , Inseticidas/farmacologia , Nanopartículas , Extratos Vegetais/farmacologia , Rubiaceae/química , Animais , Bioensaio , Vetores de Doenças , Ouro/isolamento & purificação , Índia , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...