Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(15): 6135-6140, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35899996

RESUMO

Real-time thermal sensing on flexible substrates could enable a plethora of new applications. However, achieving fast, sub-millisecond response times even in a single sensor is difficult, due to the thermal mass of the sensor and encapsulation. Here, we fabricate flexible monolayer molybdenum disulfide (MoS2) temperature sensors and arrays, which can detect temperature changes within a few microseconds, over 100× faster than flexible thin-film metal sensors. Thermal simulations indicate the sensors' response time is only limited by the MoS2 interfaces and encapsulation. The sensors also have high temperature coefficient of resistance, ∼1-2%/K and stable operation upon cycling and long-term measurement when they are encapsulated with alumina. These results, together with their biocompatibility, make these devices excellent candidates for biomedical sensor arrays and many other Internet of Things applications.


Assuntos
Dissulfetos , Molibdênio , Temperatura
2.
ACS Nano ; 16(6): 8827-8836, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35435652

RESUMO

A rapid surge in global energy consumption has led to a greater demand for renewable energy to overcome energy resource limitations and environmental problems. Recently, a number of van der Waals materials have been highlighted as efficient absorbers for very thin and highly efficient photovoltaic (PV) devices. Despite the predicted potential, achieving power conversion efficiencies (PCEs) above 5% in PV devices based on van der Waals materials has been challenging. Here, we demonstrate a vertical WSe2 PV device with a high PCE of 5.44% under one-sun AM1.5G illumination. We reveal the multifunctional nature of a tungsten oxide layer, which promotes a stronger internal electric field by overcoming limitations imposed by the Fermi-level pinning at WSe2 interfaces and acts as an electron-selective contact in combination with monolayer graphene. Together with the developed bottom contact scheme, this simple yet effective contact engineering method improves the PCE by more than five times.

3.
Nat Commun ; 12(1): 7034, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887383

RESUMO

Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact-TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoOx capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g-1 for flexible TMD (WSe2) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g-1, creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics.

4.
ACS Appl Mater Interfaces ; 13(35): 41866-41874, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34427445

RESUMO

Two-dimensional (2D) semiconductors have been proposed for heterogeneous integration with existing silicon technology; however, their chemical vapor deposition (CVD) growth temperatures are often too high. Here, we demonstrate direct CVD solid-source precursor synthesis of continuous monolayer (1L) MoS2 films at 560 °C in 50 min, within the 450-to-600 °C, 2 h thermal budget window required for back-end-of-the-line compatibility with modern silicon technology. Transistor measurements reveal on-state current up to ∼140 µA/µm at 1 V drain-to-source voltage for 100 nm channel lengths, the highest reported to date for 1L MoS2 grown below 600 °C using solid-source precursors. The effective mobility from transfer length method test structures is 29 ± 5 cm2 V-1 s-1 at 6.1 × 1012 cm-2 electron density, which is comparable to mobilities reported from films grown at higher temperatures. The results of this work provide a path toward the realization of high-quality, thermal-budget-compatible 2D semiconductors for heterogeneous integration with silicon manufacturing.

5.
Nano Lett ; 21(8): 3443-3450, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33852295

RESUMO

Layered semiconducting transition metal dichalcogenides (TMDs) are promising materials for high-specific-power photovoltaics due to their excellent optoelectronic properties. However, in practice, contacts to TMDs have poor charge carrier selectivity, while imperfect surfaces cause recombination, leading to a low open-circuit voltage (VOC) and therefore limited power conversion efficiency (PCE) in TMD photovoltaics. Here, we simultaneously address these fundamental issues with a simple MoOx (x ≈ 3) surface charge-transfer doping and passivation method, applying it to multilayer tungsten disulfide (WS2) Schottky-junction solar cells with initially near-zero VOC. Doping and passivation turn these into lateral p-n junction photovoltaic cells with a record VOC of 681 mV under AM 1.5G illumination, the highest among all p-n junction TMD solar cells with a practical design. The enhanced VOC also leads to record PCE in ultrathin (<90 nm) WS2 photovoltaics. This easily scalable doping and passivation scheme is expected to enable further advances in TMD electronics and optoelectronics.

6.
ACS Appl Mater Interfaces ; 7(24): 13119-24, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26050553

RESUMO

We report on the structural, morphological and optical properties of AB(Br(1-x)Cl(x))3 (where, A = CH3NH3(+), B = Pb(2+) and x = 0 to 1) perovskite semiconductor and their successful demonstration in green and blue emissive perovskite light emitting diodes at room temperature. The bandgap of perovskite thin film is tuned from 2.42 to 3.16 eV. The onset of optical absorption is dominated by excitonic effects. The coulomb field of the exciton influences the absorption at the band edge. Hence, it is necessary to explicitly account for the enhancement of the absorption through the Sommerfield factor. This enables us to correctly extract the exciton binding energy and the electronic bandgap. We also show that the lattice constant varies linearly with the fractional chlorine content satisfying Vegards law.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...