Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromolecules ; 45(20): 8373-8381, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23148127

RESUMO

This study examined the compression of solvated polymer brushes on bioengineered surfaces during the initial stages of Staphylococcus Aureus (S. aureus) adhesion from gentle flow. A series of PEG [poly(ethylene glycol)] brushes, 7 to 17 nm in height and completely non-adhesive to proteins and bacteria, were modified by the incorporation of sparse isolated ~10 nm cationic polymer "patches" at their bases. These nanoscale regions, which lacked PEG tethers, were electrostatically attractive towards negative bacteria or proteins. S. aureus drawn to the interface by multiple adhesive patches compressed the PEG brush in the remaining contact region. The observed onset of bacterial or fibrinogen capture with increases in patch content was compared with calculations. Balancing the attraction energy (proportional to the number of patches engaging a bacterium during capture) against steric forces (calculated using the Alexander-DeGennes treatment) provided perspective on the brush compression. The results were consistent with a bacteria-surface gap on the order of the Debye length in these studies. In this limit of strong brush compression, structural features (height, persistence length) of the brush were unimportant so that osmotic pressure dominated the steric repulsion. Thus, the dominant factor for bacterial repulsion was the mass of PEG in the brush. This result explains empirical reports in the literature that identify the total PEG content of a brush as a criteria for prevention of bioadhesion, independent of tether length and spacing, within a reasonable range for those parameters. Bacterial capture was also compared to that of protein capture. It was found, surprisingly, that the patchy brushes were more protein-than bacteria-resistant. S. aureus adhesion driven by patches within otherwise protein-resistant PEG brushes was explained by the bacteria's greater tendency to compress large areas of brush to interact with many patches. By contrast, proteins are thought to penetrate the brush at a few sites of PEO-free patches. The finding provides a mechanism for the literature reports that in-vitro protein resistance is a poor predictor of in-vitro implant failure related to cell-surface adhesion.

2.
Langmuir ; 28(20): 7803-10, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22563906

RESUMO

Toward an understanding of nanoparticle-bacterial interactions and the development of sensors and other substrates for controlled bacterial adhesion, this article describes the influence of flow on the initial stages of bacterial capture (Staphylococcus aureus) on surfaces containing cationic nanoparticles. A PEG (poly(ethylene glycol)) brush on the surface around the nanoparticles sterically repels the bacteria. Variations in ionic strength tune the Debye length from 1 to 4 nm, increasing the strength and range of the nanoparticle attractions toward the bacteria. At relatively high ionic strengths (physiological conditions), bacterial capture requires several nanoparticle-bacterial contacts, termed "multivalent capture". At low ionic strength and gentle wall shear rates (on the order of 10 s(-1)), individual bacteria can be captured and held by single surface-immobilized nanoparticles. Increasing the flow rate to 50 s(-1) causes a shift from monovalent to divalent capture. A comparison of experimental capture efficiencies with statistically determined capture probabilities reveals the initial area of bacteria-surface interaction, here about 50 nm in diameter for a Debye length κ(-1) of 4 nm. Additionally, for κ(-1) = 4 nm, the net per nanoparticle binding energies are strong but highly shear-sensitive, as is the case for biological ligand-receptor interactions. Although these results have been obtained for a specific system, they represent a regime of behavior that could be achieved with different bacteria and different materials, presenting an opportunity for further tuning of selective interactions. These finding suggest the use of surface elements to manipulate individual bacteria and nonfouling designs with precise but finite bacterial interactions.


Assuntos
Engenharia , Nanopartículas/química , Staphylococcus aureus/química , Difusão , Hidrodinâmica , Concentração de Íons de Hidrogênio , Eletricidade Estática , Propriedades de Superfície
3.
Colloids Surf B Biointerfaces ; 87(1): 109-15, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21640564

RESUMO

This paper describes the creation of hybrid surfaces containing cationic nanoparticles and biocompatible PEG (polyethylene glycol) brushes that manipulate bacterial adhesion for potential diagnostic and implant applications. Here, ∼10 nm cationically functionalized gold nanoparticles are immobilized randomly on negative silica surfaces at tightly controlled surface loadings, and the remaining areas are functionalized with a hydrated PEG brush, using a graft copolymer of poly-l-lysine and PEG (PLL-PEG), containing 2000 molecular weight PEG chains and roughly 30% functionalization of the PLL. The cationic nanoparticles attract the negative surfaces of suspended Staphylococcus aureus bacteria while the PEG brush exerts a steric repulsion. With the nanoparticle and PEG brush heights on the same lengthscale, variations in ionic strength are demonstrated to profoundly influence the capture of S. aureus on these surfaces. For bacteria captured from gentle flow, a crossover from multivalent to univalent binding is demonstrated as the Debye length is increased from 1 to 4 nm. In the univalent regime, 1 um diameter spherical bacteria are captured and held by single nanoparticles. In the multivalent regime, there is an adhesion threshold in the surface density of nanoparticles needed for bacterial capture. The paper also documents an interesting effect concerning the relaxations in the PLL-PEG brush itself. For brushy surfaces containing no nanoparticles, bacterial adhesion persists on newly formed brushes, but is nearly eliminated after these brushes relax, at constant mass in buffer for 12h. Thus brushy relaxations increase biocompatibility.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Nanopartículas/química , Polietilenoglicóis/farmacologia , Polilisina/farmacologia , Staphylococcus aureus/citologia , Cátions , Concentração Osmolar , Dióxido de Silício/química , Eletricidade Estática , Propriedades de Superfície/efeitos dos fármacos
4.
Chemistry ; 15(43): 11710-4, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19790208

RESUMO

We have investigated how doubly selective synthetic mimics of antimicrobial peptides (SMAMPs), which can differentiate not only between bacteria and mammalian cells, but also between Gram-negative and Gram-positive bacteria, make the latter distinction. By dye-leakage experiments on model vesicles and complementary experiments on bacteria, we were able to relate the Gram selectivity to structural differences of these bacteria types. We showed that the double membrane of E. coli rather than the difference in lipid composition between E. coli and S. aureus was responsible for Gram selectivity. The molecular-weight-dependent antimicrobial activity of the SMAMPs was shown to be a sieving effect: while the 3000 g mol(-1) SMAMP was able to penetrate the peptidoglycan layer of the Gram-positive S. aureus bacteria, the 50000 g mol(-1) SMAMP got stuck and consequently did not have antimicrobial activity.


Assuntos
Anti-Infecciosos/química , Polímeros/química , Materiais Biomiméticos/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptidoglicano/química , Staphylococcus aureus/efeitos dos fármacos
5.
Chemistry ; 15(43): 11715-22, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19798715

RESUMO

The synthesis and characterization of a series of poly(oxanorbornene)-based synthetic mimics of antimicrobial peptides (SMAMPs) is presented. In the first part, the effect of different organic counterions on the antimicrobial properties of the SMAMPs was investigated. Unexpectedly, adding hydrophobicity by complete anion exchange did not increase the SMAMPs' antimicrobial activity. It was found by dye-leakage studies that this was due to the loss of membrane activity of these polymers caused by the formation of tight ion pairs between the organic counterions and the polymer backbone. In the second part, the effect of molecular charge density on the biological properties of a SMAMP was investigated. The results suggest that, above a certain charge threshold, neither minimum inhibitory concentration (MIC90) nor hemolytic activity (HC50) is greatly affected by adding more cationic groups to the molecule. A SMAMP with an MIC90 of 4 microg mL(-1) against Staphylococcus aureus and a selectivity (=HC50/MIC90) of 650 was discovered, the most selective SMAMP to date.


Assuntos
Anti-Infecciosos/química , Polímeros/química , Anti-Infecciosos/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Cátions/química , Diaminas/química , Hemólise , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Polímeros/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...