Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(5): e16290, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251828

RESUMO

Knowledge of the stage-discharge rating curve is useful in designing and planning flood warnings; thus, developing a reliable stage-discharge rating curve is a fundamental and crucial component of water resource system engineering. Since the continuous measurement is often impossible, the stage-discharge relationship is generally used in natural streams to estimate discharge. This paper aims to optimize the rating curve using a generalized reduced gradient (GRG) solver and the test the accuracy and applicability of the hybridized linear regression (LR) with other machine learning techniques, namely, linear regression-random subspace (LR-RSS), linear regression-reduced error pruning tree (LR-REPTree), linear regression-support vector machine (LR-SVM) and linear regression-M5 pruned (LR-M5P) models. An application of these hybrid models was performed and test to modeling the Gaula Barrage stage-discharge problem. For this, 12-year historical stage-discharge data were collected and analyzed. The 12-year historical daily flow data (m3/s) and stage (m) from during the monsoon season, i.e., June to October only from 03/06/2007 to 31/10/2018, were used for discharge simulation. The best suitable combination of input variables for LR, LR-RSS, LR-REPTree, LR-SVM, and LR-M5P models was identified and decided using the gamma test. GRG-based rating curve equations were found to be as effective and more accurate as conventional rating curve equations. The outcomes from GRG, LR, LR-RSS, LR-REPTree, LR-SVM, and LR-M5P models were compared to observed values of daily discharge based on Nash Sutcliffe model efficiency coefficient (NSE), Willmott Index of Agreement (d), Kling-Gupta efficiency (KGE), mean absolute error (MAE), mean bias error (MBE), relative bias in percent (RE), root mean square error (RMSE) Pearson correlation coefficient (PCC) and coefficient of determination (R2). The LR-REPTree model (combination 1: NSE = 0.993, d = 0.998, KGE = 0.987, PCC(r) = 0.997, and R2 = 0.994 and minimum value of RMSE = 0.109, MAE = 0.041, MBE = -0.010 and RE = -0.1%; combination 2; NSE = 0.941, d = 0.984, KGE = 0. 923, PCC(r) = 0. 973, and R2 = 0. 947 and minimum value of RMSE = 0. 331, MAE = 0.143, MBE = -0.089 and RE = -0.9%) performed superior to the GRG, LR, LR-RSS, LR-SVM, and LR-M5P models in all input combinations during the testing period. It was also noticed that the performance of the alone LR and its hybrid models (i.e., LR-RSS, LR-REPTree, LR-SVM, and LR-M5P) was better than the conventional stage-discharge rating curve, including the GRG method.

2.
Environ Sci Pollut Res Int ; 28(26): 35242-35265, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666845

RESUMO

The information about different morphometric parameters of any watershed is necessary for better watershed management and planning. This study aimed to investigate morphometric characteristics, to assess the soil erosion risk, and to prioritize different sub-watersheds of the Koyna River basin, India, with two different approaches using geospatial technology. Different linear, shape, and relief parameters of the basin were estimated and analyzed. The linear and shape parameters indicated that the basin has less flood hazard. The relief parameters indicated that the basin has moderate roughness and unevenness. The parallel drainage pattern is dominant inside the basin due to the highly elongated nature of the basin. The bifurcation ratio (Rb) indicated lithological and geological variations inside the basin. Two different approaches namely morphometric analysis and empirical Revised Universal Soil Loss Equation (RUSLE) method were applied for prioritization of different sub-watersheds. Rainfall, soil, digital elevation model (DEM), and normalized difference vegetation index (NDVI) data were used for identifying erosion-prone zones with RUSLE analysis. Based on RUSLE analysis, the entire study area was divided into five soil erosion risk classes namely very slight (80.43 %), slight (14.94 %), moderate (3.21 %), severe (0.79 %), and very severe (0.63%), respectively. Most of the study area was found to be under a very slight soil erosion vulnerability class based on the RUSLE approach. The conservation practices should be carried out as per the priority ranking of different sub-watershed based on soil erosion rates. The results found in this study can surely assist in the implementation of soil conservation planning and management practices to reduce soil loss in the Koyna River basin of India.


Assuntos
Rios , Erosão do Solo , Conservação dos Recursos Naturais , Monitoramento Ambiental , Sistemas de Informação Geográfica , Índia , Solo , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...