Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18126, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518554

RESUMO

COVID-19 has emerged as global pandemic with largest damage to the public health, economy and human psyche.The genome sequence data obtained during the ongoing pandemic are valuable to understand the virus evolutionary patterns and spread across the globe. Increased availability of genome information of circulating SARS-CoV-2 strains in India will enable the scientific community to understand the emergence of new variants and their impact on human health. The first case of COVID-19 was detected in Chambal region of Madhya Pradesh state in mid of March 2020 followed by multiple introduction events and expansion of cases within next three months. More than 5000 COVID-19 suspected samples referred to Defence Research and Development Establishment, Gwalior, Madhya Pradesh were analyzed during the nation -wide lockdown and unlock period. A total of 136 cases were found positive over a span of three months that included virus introduction to the region and its further spread. Whole genome sequences employing Oxford nanopore technology were generated for 26 SARS-CoV-2 circulating in 10 different districts in Madhya Pradesh state of India. This period witnessed index cases with multiple travel histories responsible for introduction of COVID-19 followed by remarkable expansion of virus. The genome wide substitutions including in important viral proteins were identified. The detailed phylogenetic analysis revealed the circulating SARS-CoV-2 clustered in multiple clades including A2a, A4 and B. The cluster-wise segregation was observed, suggesting multiple introduction links and subsequent evolution of virus in the region. This is the first comprehensive whole genome sequence analysis from central India, which revealed the emergence and evolution of SARS-CoV-2 during thenation-wide lockdown and unlock.


Assuntos
COVID-19/diagnóstico , Mutação de Sentido Incorreto , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/epidemiologia , COVID-19/virologia , Evolução Molecular , Genoma Viral/genética , Índia , Reação em Cadeia da Polimerase Multiplex/métodos , Pandemias/prevenção & controle , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Sequenciamento Completo do Genoma/métodos
2.
Protein Pept Lett ; 28(9): 1071-1082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33820508

RESUMO

BACKGROUND: Some pathogenic bacteria can be potentially used for nefarious applications in the event of bioterrorism or biowarfare. Accurate identification of biological agent from clinical and diverse environmental matrices is of paramount importance for implementation of medical countermeasures and biothreat mitigation. OBJECTIVE: A novel methodology is reported here for the development of a novel enrichment strategy for the generally conserved abundant bacterial proteins for an accurate downstream species identification using tandem MS analysis in biothreat scenario. METHODS: Conserved regions in the common bacterial protein markers were analyzed using bioinformatic tools and stitched for a possible generic immuno-capture for an intended downstream MS/MS analysis. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of 60 kDa chaperonin GroEL. Hyper-immune serum was raised against recombinant synthetic GroEL protein. RESULTS: The conserved regions of common bacterial proteins were stitched for a possible generic immuno-capture and subsequent specific identification by tandem MS using variable regions of the molecule. Phylogenetic analysis of selected proteins was carried out and synthetic constructs were generated for the expression of conserved stitched regions of GroEL. In a proof-of-concept study, hyper-immune serum raised against recombinant synthetic GroEL protein exhibited reactivity with ~60 KDa proteins from the cell lysates of three bacterial species tested. CONCLUSION: The envisaged methodology can lead to the development of a novel enrichment strategy for the abundant bacterial proteins from complex environmental matrices for the downstream species identification with increased sensitivity and substantially reduce the time-to-result.


Assuntos
Bactérias , Infecções Bacterianas , Proteínas de Bactérias , Chaperonina 60 , Filogenia , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Infecções Bacterianas/genética , Infecções Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Chaperonina 60/metabolismo , Humanos
3.
World J Microbiol Biotechnol ; 37(5): 74, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33779874

RESUMO

Some pathogenic microbes can be used for nefarious applications and instigate population-based fear. In a bio-threat scenario, rapid and accurate methods to detect biological agents in a wide range of complex environmental and clinical matrices, is of paramount importance for the implementation of mitigation protocols and medical countermeasures. This study describes targeted and shot-gun tandem MS based approaches for the verification of biological agents from the environmental samples. The marker proteins and peptides were elucidated by an exhaustive literature mining, in silico analysis of prioritized proteins, and MS/MS analysis of abundant proteins from selected bacterial species. For the shot-gun methodology, tandem MS analysis of abundant peptides was carried from spiked samples. The validation experiments employing a combination of shot-gun tandem MS analysis and a targeted search reported here is a proof of concept to show the applicability of the methodology for the unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples.


Assuntos
Fatores Biológicos/classificação , Armas Biológicas/classificação , Gammaproteobacteria/classificação , Peptídeos/análise , Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Fatores Biológicos/isolamento & purificação , Biomarcadores , Gammaproteobacteria/isolamento & purificação , Humanos , Peptídeos/química , Proteínas/química , Sensibilidade e Especificidade , Estudos de Validação como Assunto
4.
Anaerobe ; 63: 102209, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32387808

RESUMO

Epsilon toxin (ETX), produced by Clostridium perfringens Type B or type D strains, is a potential biological and toxin warfare (BTW) agent, largely for its very high toxicity. The toxin is implicated in several animal diseases. Using LC-MS/MS analysis, we report here elucidation of putative serum maker proteins for ETX exposure with an objective of the early diagnosis of intoxication. Of 166 consensus proteins (488 peptides), showing ETX-induced alterations, 119 proteins exhibited increase and 47 proteins showed decreased abundance in serum, as revealed by SWATH (DIA) acquisition on LC-MS/MS and label free quantitative analysis of control and test samples. Complement and coagulation cascade, nitrogen metabolism, negative regulation of peptidase activity, and response to ROS were among the biological processes and pathways perturbed by the ETX exposure. Interaction network indicated enzyme inhibitor activity, detoxification of ROS, and steroid binding functions were the major interaction networks for the proteins with increased abundance, while, hemostasis and structural molecule activity were the prominent networks for the down-regulated proteins. Validation studies were carried out by immunoprecipitation, ELISA, and Western blot analysis of selected proteins to demonstrate diagnostic potential of the putative marker proteins of ETX exposure.


Assuntos
Toxinas Bacterianas , Biomarcadores/metabolismo , Proteínas Sanguíneas/metabolismo , Clostridium perfringens/metabolismo , Animais , Toxinas Bacterianas/metabolismo , Cromatografia Líquida , Modelos Animais de Doenças , Camundongos , Proteômica/métodos , Espectrometria de Massas em Tandem
5.
Sci Rep ; 10(1): 2205, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32042063

RESUMO

Some pathogens and toxins have the potential to be used as weapons of mass destruction and instigate population-based fear. Efforts to mitigate biothreat require development of efficient countermeasures which in turn relies on fast and accurate methods to detect the biological agents in a range of complex matrices including environmental and clinical samples. We report here an mass spectrometry (MS) based methodology, employing both targeted and shot-gun approaches for the verification of biological agents from the environmental samples. Our shot-gun methodology relied on tandem MS analysis of abundant peptides from the spiked samples, whereas, the targeted method was based on an extensive elucidation of marker proteins and unique peptides resulting in the generation of an inclusion list of masses reflecting relevant peptides for the unambiguous identification of nine bacterial species [listed as priority agents of bioterrorism by Centre for Disease Control and Prevention (CDC)] belonging to phylogenetically diverse genera. The marker peptides were elucidated by extensive literature mining, in silico analysis, and tandem MS (MS/MS) analysis of abundant proteins of the cultivated bacterial species in our laboratory. A combination of shot-gun MS/MS analysis and the targeted search using a panel of unique peptides is likely to provide unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples. The comprehensive list of peptides reflected in the inclusion list, makes a valuable resource for the multiplex analysis of select biothreat agents and further development of targeted MS/MS assays.


Assuntos
Proteínas de Bactérias/análise , Armas Biológicas/classificação , Bioterrorismo/prevenção & controle , Tipagem Molecular/métodos , Espectrometria de Massas em Tandem , Biomarcadores/análise , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Mineração de Dados , Peptídeos/análise
6.
Anaerobe ; 59: 76-91, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31145997

RESUMO

Epsilon toxin (ETX) is the major virulence determinant of C. perfringens type B or type D strains, causing diseases in animals, besides being a listed biological and toxin warfare (BTW) agent. Keeping in mind the high lethality and the rapid onset of clinical manifestations, early diagnosis of epsilon toxin exposure is of paramount importance for implementation of appropriate medical countermeasures. Using a 2DE-MS approach, the present study is the first comprehensive proteomic elucidation of ETX-induced protein markers in the mouse model, providing putative targets for early diagnosis of ETX exposure. A total of 52 unique proteins showing ETX-induced modulations were identified in plasma and urine samples. Fibrinogen, apolipoprotein, serum amyloid protein, plasminogen, serum albumin, glutathione peroxidase, transferrin, major urinary protein 2, haptoglobin, transthyretin, and vitamin D-binding protein were among the proteins observed in more than one dataset with altered abundance after the ETX-intoxication. The predicted localization, function, and interaction of the ETX-modulated proteins in the plasma and urine indicated involvement of multiple pathways; extracellular proteins, followed by macromolecular complexes associated with blood coagulation and plasminogen activating cascade, being the most prominent among others. The putative markers elucidated here warrants further validation and can be of immense value for the early diagnosis of ETX exposure.


Assuntos
Toxinas Bacterianas/toxicidade , Biomarcadores/sangue , Biomarcadores/urina , Intoxicação/patologia , Proteínas/análise , Animais , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Feminino , Espectrometria de Massas , Camundongos Endogâmicos BALB C , Plasma/química , Urina/química
7.
Anal Chem ; 89(7): 4062-4070, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28263059

RESUMO

Some pathogens and toxins have the potential to be used as weapons of mass destruction and instigate population-based fear. Rapid, sensitive, and unambiguous identification of biothreat agents is of paramount importance for confirmation of the event and to mitigate the direct and indirect damages to public health and resources. Although there are several potential dissemination scenarios to describe an attack with a biological weapon, artificially generated bioaerosol is of the greatest concern from a bioterrorism or warfare perspective, potentially capable of causing mass destruction to a civilian or military population by inhalation of toxic bioaerosol. The present investigation proposes methodologies for recovery of biological agent followed by an off-site unambiguous detection using tandem mass spectrometry, in a postattack situation. We envisaged a biothreat scenario wherein the polydispersed bioaerosol is disseminated in bulk over any geographical setting. The larger particles (>5 µm in diameter) of bioaerosol settle and bind to various surfaces depending on the geographical setting. Recovery of agent was optimized from foliage, sand, and glass in a simulated biothreat scenario using bovine serum albumin (BSA). The recovered agents were shown to be amenable to detection by a downstream tandem MS analysis. Applicability of the proposed methodology was demonstrated in validation experiments for the recovery and detection of toxin and bacterial agents. The use of cleaner matrices (foliage, exposed smooth surfaces, sand) is recommended for retrospective verification of agent in a biothreat scenario.


Assuntos
Fatores Biológicos/análise , Armas Biológicas , Animais , Bovinos , Clostridium perfringens/química , Soroalbumina Bovina/química , Espectrometria de Massas em Tandem
8.
Folia Microbiol (Praha) ; 62(4): 343-353, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28213749

RESUMO

Clostridium perfringens is a Validated Biological Agent and a pathogen of medical, veterinary, and military significance. Gas gangrene is the most destructive of all the clostridial diseases and is caused by C. perfringens type A strains wherein the infection spreads quickly (several inches per hour) with production of gas. Influence of repeated in vitro cultivation on the infectivity of C. perfringens was investigated by comparing the surface proteins of laboratory strain and repository strains of the bacterium using 2DE-MS approach. In order to optimize host-pathogen interaction during experimental gas gangrene infection, we also explored the role of particulate matrix on ability of C. perfringens to cause gas gangrene.


Assuntos
Clostridium perfringens/fisiologia , Gangrena Gasosa/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/crescimento & desenvolvimento , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Camundongos Endogâmicos BALB C
9.
Anaerobe ; 35(Pt B): 77-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238688

RESUMO

The prevailing scenario of bioterrorism warrants development of medical countermeasures with expanded coverage of select agents. Clostridium perfringens is a pathogen of medical, veterinary and military importance, and has been listed as Validated Biological Agent. We employed 2DE-MS approach to identify a total of 134 unique proteins (529 protein spot features) from the extractable proteome of four type A and type C strains. Proteins showing altered expression under host-simulated conditions from virulent type A strain (ATCC13124) were also elucidated. Significant among the differentially expressed proteins were elongation factor, molecular chaperones, ribosomal proteins, carbamoyl phosphate synthase, clpB protein, choloylglycine hydrolase, phosphopyruvate hydratase, and trigger factor. Predictive elucidation, of putative virulence associated proteins and sequence conservation pattern of selected candidates, was carried out using homologous proteins from other bacterial select agents to screen for the commonality of putative antigenic determinants. Pathogens (17 select agents) were observed to form three discrete clusters; composition of I and II being consistent in most of the phylogenetic reconstructions. This work provides a basis for further validation of putative candidate proteins as prophylactic agents and for their ability to provide protection against clusters of pathogenic select bacterial agents; aimed at mitigating the shadows of biothreat.


Assuntos
Proteínas de Bactérias/análise , Clostridium perfringens/química , Proteoma/análise , Fatores de Virulência/análise , Animais , Proteínas de Bactérias/isolamento & purificação , Infecções por Clostridium/microbiologia , Clostridium perfringens/patogenicidade , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Camundongos , Proteoma/isolamento & purificação , Análise de Sobrevida , Virulência , Fatores de Virulência/isolamento & purificação
10.
Infect Genet Evol ; 34: 434-43, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26027922

RESUMO

Clostridium perfringens is an obligately anaerobic rod-shaped bacterium and etiological agent for several diseases in humans and animals. The pathogen has been listed as Validated Biological Agent and warrants development of medical countermeasures. The homologs of some of the lipoproteins identified from various fractions of C. perfringens in our previous studies were observed to be virulence determinants in other pathogenic bacteria. Three putative virulence associated lipoproteins; polysaccharide deacetylase family protein, probable ion-uptake ABC transporter, and a putative lipoprotein of no known function are reported here with respect to their immuno-protective potentials. The three proteins were over expressed and purified to near homogeneity. The lipoproteins were shown to be exposed on the C. perfringens surface and, hence, accessible to antibodies and potentially visible to the host immune system. Immunization of mice with purified recombinant proteins elicited protective immunity against challenge with C. perfringens in mouse gas gangrene model. Distribution and relationship of orthologous proteins across other bacterial select agents especially among the members of Firmicutes, was carried out to look for conserved antigenic determinants.


Assuntos
Proteínas de Bactérias/imunologia , Clostridium perfringens/imunologia , Gangrena Gasosa/prevenção & controle , Lipoproteínas/imunologia , Animais , Vacinas Bacterianas/imunologia , Clostridium perfringens/genética , Modelos Animais de Doenças , Feminino , Gangrena Gasosa/imunologia , Gangrena Gasosa/microbiologia , Camundongos Endogâmicos BALB C , Filogenia , Proteínas Recombinantes/imunologia , Vacinação
11.
Infect Genet Evol ; 11(1): 64-77, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20965279

RESUMO

Soil and sewage act as a reservoir of animal pathogens and their dissemination to animals profoundly affects the safety of our food supply. Moreover, acquisition and further spread of antibiotic resistance determinants among pathogenic bacterial populations is the most relevant problem for the treatment of infectious diseases. Bacterial strains from soil and sewage are a potential reservoir for antimicrobial resistance genes. Accurate species determination for anaerobes from environmental samples has become increasingly important with the re-emergence of anaerobic bacteremia and prevalence of multiple-drug-resistant microorganisms. Soil samples were collected from various locations of planar India and the diversity of anaerobic bacteria was determined by 16S rRNA gene sequencing. Viable counts of anaerobic bacteria on anaerobic agar and SPS agar ranged from 1.0 × 10(2)cfu/g to 8.8 × 10(7)cfu/g and nil to 3.9 × 10(6)cfu/g, respectively. Among clostrdia, Clostridium bifermentans (35.9%) was the most dominant species followed by Clostridium perfringens (25.8%). Sequencing and phylogenetic analysis of C. perfringens beta2 toxin gene (cpb2) fragment indicated specific phylogenetic affiliation with cluster Ia for 5 out of 6 strains. Antibiotic susceptibility for 30 antibiotics was tested for 74 isolates, revealing resistance for as high as 16-25 antibiotics for 35% of the strains tested. Understanding the diversity of the anaerobic bacteria from soil and sewage with respect to animal health and spread of zoonotic pathogen infections is crucial for improvements in animal and human health.


Assuntos
Antibacterianos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Esgotos/microbiologia , Microbiologia do Solo , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Contagem de Colônia Microbiana , Elementos de DNA Transponíveis , Resistência Microbiana a Medicamentos , Genes Bacterianos , Índia , Testes de Sensibilidade Microbiana , Filogenia , RNA Ribossômico 16S/genética
12.
Infect Immun ; 78(9): 3957-68, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20605988

RESUMO

Clostridium perfringens is a medically important clostridial pathogen and an etiological agent causing several diseases in humans and animals. C. perfringens and its toxins have been listed as potential biological and toxin warfare (BTW) agents; thus, efforts to develop strategies for detection and protection are warranted. Forty-eight extracellular proteins of C. perfringens type A and type C strains have been identified here using a 2-dimensional gel electrophoresis-mass spectrometry (2-DE-MS) technique. The SagA protein, the DnaK-type molecular chaperone hsp70, endo-beta-N-acetylglucosaminidase, and hypothetical protein CPF_0656 were among the most abundant proteins secreted by C. perfringens ATCC 13124. The antigenic component of the exoproteome of this strain has also been identified. Most of the extracellular proteins were predicted to be involved in carbohydrate transport and metabolism (16%) or cell envelope biogenesis or to be outer surface protein constituents (13%). More than 50% of the proteins were predictably secreted by either classical or nonclassical pathways. LipoP and TMHMM indicated that nine proteins were extracytoplasmic but cell associated. Immunization with recombinant ornithine carbamoyltransferase (cOTC) clearly resulted in protection against a direct challenge with C. perfringens organisms. A significant rise in IgG titers in response to recombinant cOTC was observed in mice, and IgG2a titers predominated over IgG1 titers (IgG2a/IgG1 ratio, 2). The proliferation of spleen lymphocytes in cOTC-immunized animals suggested a cellular immune response. There were significant increases in the levels of gamma interferon (IFN-gamma) and interleukin 2 (IL-2), suggesting a Th1 type immune response.


Assuntos
Proteínas de Bactérias/análise , Clostridium perfringens/química , Proteômica/métodos , Animais , Proteínas de Bactérias/imunologia , Clostridium perfringens/classificação , Clostridium perfringens/patogenicidade , Eletroforese em Gel Bidimensional , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Ornitina Carbamoiltransferase/imunologia , Virulência
13.
BMC Microbiol ; 9: 162, 2009 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-19664283

RESUMO

BACKGROUND: Clostridium perfringens is a medically important clostridial pathogen causing diseases in man and animals. To invade, multiply and colonize tissues of the host, a pathogen must be able to evade host immune system, and obtain nutrients essential for growth. The factors involved in these complex processes are largely unknown and of crucial importance to understanding microbial pathogenesis. Many of the virulence determinants and putative vaccine candidates for bacterial pathogens are known to be surface localized. RESULTS: Using 2-DE mass spectrometry strategy, we identified major surface (22) and cell envelope (10) proteins from Clostridium perfringens ATCC13124 and those differentially expressed (11) in cells grown on cooked meat medium (CMM) in comparison with cells grown in reference state (tryptose-yeast extract-glucose medium). Riboflavin biosynthesis protein, ornithine carbamoyltransferase, cystathionine beta-lyase, and threonine dehydratase were the predominant proteins that exhibited 2.19 to 8.5 fold increase in the expression level in cells growing on CMM. CONCLUSION: Ornithine carbamoyltransferase and cystathionine beta-lyase were over-expressed in cells grown on cooked meat medium and also identified in the surface protein fraction and the former was immunogenic; making them potential vaccine candidates. Based upon bioinformatic analysis; choloylglycine hydrolase family protein, cell wall-associated serine proteinase, and rhomboid family protein were predicted as surface protein markers for specific detection of C. perfringens from the environment and food. Most of the proteins over-expressed in CMM were shown to have putative function in metabolism, of which seven were involved in amino acid transport and metabolism or lipid metabolism.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Clostridium perfringens/metabolismo , Proteoma/metabolismo , Animais , Biologia Computacional , Meios de Cultura , Feminino , Liases/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Ornitina Carbamoiltransferase/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...