Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 440, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36765083

RESUMO

High-entropy alloys/compounds have large configurational entropy by introducing multiple components, showing improved functional properties that exceed those of conventional materials. However, how increasing entropy impacts the thermodynamic/kinetic properties in liquids that are ambiguous. Here we show this strategy in liquid electrolytes for rechargeable lithium batteries, demonstrating the substantial impact of raising the entropy of electrolytes by introducing multiple salts. Unlike all liquid electrolytes so far reported, the participation of several anionic groups in this electrolyte induces a larger diversity in solvation structures, unexpectedly decreasing solvation strengths between lithium ions and solvents/anions, facilitating lithium-ion diffusivity and the formation of stable interphase passivation layers. In comparison to the single-salt electrolytes, a low-concentration dimethyl ether electrolyte with four salts shows an enhanced cycling stability and rate capability. These findings, rationalized by the fundamental relationship between entropy-dominated solvation structures and ion transport, bring forward high-entropy electrolytes as a composition-rich and unexplored space for lithium batteries and beyond.

2.
Adv Mater ; 35(17): e2210677, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36718916

RESUMO

Developing liquid electrolytes with higher kinetics and enhanced interphase stability is one of the key challenges for lithium batteries. However, the poor solubility of lithium salts in solvents sets constraints that compromises the electrolyte properties. Here, it is shown that introducing multiple salts to form a high-entropy solution, alters the solvation structure, which can be used to raise the solubility of specific salts and stabilize electrode-electrolyte interphases. The prepared high-entropy electrolytes significantly enhance the cycling and rate performance of lithium batteries. For lithium-metal anodes the reversibility exceeds 99%, which extends the cycle life of batteries even under aggressive cycling conditions. For commercial batteries, combining a graphite anode with a LiNi0.8 Co0.1 Mn0.1 O2 cathode, more than 1000 charge-discharge cycles are achieved while maintaining a capacity retention of more than 90%. These performance improvements with respect to regular electrolytes are rationalized by the unique features of the solvation structure in high-entropy electrolytes. The weaker solvation interaction induced by the higher disorder results in improved lithium-ion kinetics, and the altered solvation composition leads to stabilized interphases. Finally, the high-entropy, induced by the presence of multiple salts, enables a decrease in melting temperature of the electrolytes and thus enables lower battery operation temperatures without changing the solvents.

3.
Nat Commun ; 10(1): 2608, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197151

RESUMO

Two-dimensional (2D) materials are of considerable interest for catalyzing the heterogeneous conversion of CO2 to synthetic fuels. In this regard, 2D siloxene nanosheets, have escaped thorough exploration, despite being composed of earth-abundant elements. Herein we demonstrate the remarkable catalytic activity, selectivity, and stability of a nickel@siloxene nanocomposite; it is found that this promising catalytic performance is highly sensitive to the location of the nickel component, being on either the interior or the exterior of adjacent siloxene nanosheets. Control over the location of nickel is achieved by employing the terminal groups of siloxene and varying the solvent used during its nucleation and growth, which ultimately determines the distinct reaction intermediates and pathways for the catalytic CO2 methanation. Significantly, a CO2 methanation rate of 100 mmol gNi-1 h-1 is achieved with over 90% selectivity when nickel resides specifically between the sheets of siloxene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...