Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Nanobioscience ; 23(2): 336-343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38224505

RESUMO

This work introduces a systematic approach for the development of Kretschmann configuration-based biosensors designed for non-invasive urine glucose detection. The methodology encompasses the utilization of various semiconductors, including Silicon (Si), Germanium (Ge), Gallium Nitride (GaN), Aluminum Nitride (AlN), and Indium Nitride (InN), in combination with a bimetallic layer (comprising Au and Ag films of equal thickness) to enhance the biosensor sensitivity. Additionally, 2D nanomaterials, such as Black Phosphorus and Graphene, are integrated into the semiconductor layers to enhance performance further. These configurations are meticulously optimized through the application of the transfer matrix method (TMM), and the sensing parameters are assessed using the angular modulation method. Among the semiconductors, AlN and GaN exhibit superior results. On these substrates, Graphene and Black phosphorous (BP) layers are applied, resulting in four final structures (thicknesses in nm): BK7/Au(26)/Ag(26)/Si(6)/BP(0.53)/Biosample, BK7/Au(26)/Ag(26)/AlN(14)/BP(0.53)/Biosample, BK7/Au(26)/Ag(26)/GaN(12)/BP(0.53)/Biosample, and BK7/Au(26)/Ag(26)/GaN(12)/Graphene(0.34)/Biosample. These biosensors achieve Sensitivity(° /RIU) and Figure of Merit (FoM) (1/RIU) of 380, 360, 440, 400, and 58.5, 90, 90.65, and 82.4, respectively. Subsequently, these high-performing sensors undergo testing with actual urine glucose samples. Among them, two biosensors, BK7/Au(26)/Ag(26)/AlN(14)/BP (0.53)/Biosample and BK7/Au(26)/Ag(26)/GaN(14)/Graphene(0.34)/Biosample, exhibit outstanding performance, with sensitivities (° /RIU) and FoM (1/RIU) of 394.44 & 294.44, and 112.6 & 92.01 respectively. A comparison is also made with relevant previously published work, revealing improved performance in glucose detection.


Assuntos
Compostos de Alumínio , Grafite , Nanoestruturas , Ressonância de Plasmônio de Superfície , Glucose , Semicondutores , Silício
2.
Phys Rev E ; 108(2-1): 024202, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723768

RESUMO

The recent creation of Townes solitons (TSs) in binary Bose-Einstein condensates and experimental demonstration of spontaneous symmetry breaking (SSB) in solitons propagating in dual-core optical fibers has drawn renewed interest in the TS and SSB phenomenology in these and other settings. In particular, stabilization of TSs, which are always unstable in free space, is a relevant problem with various ramifications. We introduce a system which admits exact solutions for both TSs and SSB of solitons. It is based on a dual-core waveguide with quintic self-focusing and fused (localized) coupling between the cores. The respective system of coupled nonlinear Schrödinger equations gives rise to exact solutions for full families of symmetric and asymmetric solitons, which are produced by the supercritical SSB bifurcation (i.e., the symmetry-breaking phase transition of the second kind). Stability boundaries of asymmetric solitons are identified by dint of numerical methods. Unstable solitons spontaneously transform into robust moderately asymmetric breathers or strongly asymmetric states with small intrinsic oscillations. The setup can be used in the design of photonic devices operating in coupling and switching regimes.

3.
Sci Rep ; 13(1): 13768, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612417

RESUMO

Analytically solvable models are benchmarks in studies of phase transitions and pattern-forming bifurcations. Such models are known for phase transitions of the second kind in uniform media, but not for localized states (solitons), as integrable equations which produce solitons do not admit intrinsic transitions in them. We introduce a solvable model for symmetry-breaking phase transitions of both the first and second kinds (alias sub- and supercritical bifurcations) for solitons pinned to a combined linear-nonlinear double-well potential, represented by a symmetric pair of delta-functions. Both self-focusing and defocusing signs of the nonlinearity are considered. In the former case, exact solutions are produced for symmetric and asymmetric solitons. The solutions explicitly demonstrate a switch between the symmetry-breaking transitions of the first and second kinds (i.e., sub- and supercritical bifurcations, respectively). In the self-defocusing model, the solution demonstrates the transition of the second kind which breaks antisymmetry of the first excited state.

4.
Phys Rev E ; 106(5-1): 054207, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559477

RESUMO

Currently, much interest is drawn to the analysis of optical and matter-wave modes supported by the fractional diffraction in nonlinear media. We predict a new type of such states in the form of domain walls (DWs) in the two-component system of immiscible fields. Numerical study of the underlying system of fractional nonlinear Schrödinger equations demonstrates the existence and stability of DWs at all values of the respective Lévy index (α<2), which determines the fractional diffraction, and at all values of the XPM/SPM ratio ß in the two-component system above the immiscibility threshold. The same conclusion is obtained for DWs in the system which includes the linear coupling, alongside the XPM interaction between the immiscible components. Analytical results are produced for the scaling of the DW's width. The DW solutions are essentially simplified in the special case of ß=3, as well as close to the immiscibility threshold. In addition to symmetric DWs, asymmetric ones are constructed too, in the system with unequal diffraction coefficients and/or different Lévy indices of the two components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...