Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 207: 112112, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600880

RESUMO

Graphitic carbon nitride (g-C3N4) is an emerging metal-free photocatalyst, however, engineering the photocatalytic efficiency for the effective degradation of hazardous molecules is still challenging. An unstable and low bandgap CuWO4 was composited with g-C3N4 to achieve synergistic benefits of tuning the visible light responsiveness and stability of CuWO4. CuWO4/g-C3N4 nanocomposite exhibited a relatively high visible light absorption region and the bandgap was modified from 2.77 to 2.53 eV evidenced via UV-DRS. Moreover, the fast electron transfer rate was observed with CuWO4/g-C3N4 nanocomposite as confirmed using PL and photocurrent studies. XRD, FT-IR, and HR-TEM analyses signified the formation of CuWO4/g-C3N4 nanocomposite. CuWO4/g-C3N4 nanocomposite showed enhanced photocatalytic degradation of Tetracycline (TC) about ∼7.4 fold greater than pristine g-C3N4 in 120 min. Notably, the OH• and •O2- radicals played a most significant role in photocatalytic TC degradation. Furthermore, the energy band structure, density of state, and Bader charge analyses of these molecules were performed.


Assuntos
Nanocompostos , Tetraciclina , Antibacterianos/química , Catálise , Luz , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...