Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809034

RESUMO

Though it was once known that upregulated Cannabinoid Receptor (CB1) and downregulated Fatty Acid Amide Hydrolase (FAAH1) are associated with tumour aggressiveness and metastasis, it is now clear that upregulated CB1 levels more than a certain point cause accumulation of ceramide and directs cells to apoptosis. Hence, CB1 analogues/FAAH1 blockers are explored widely as anticancer drugs. There are reports on CB1-agonists and FAAH1-blockers separately, however, dual activities along with ovarian cancer-specific links are not established for any natural compound. With this setting, we describe for the first time the isolation of 3-hydroxypropane-1,2-diyl dipalmitoleate (564.48 Da) from a marine snail, Conus inscriptus, which binds to both CB1 and FAAH1 (glide energies: -70.61 and -30.52 kcal/mol, respectively). MD simulations indicate stable compound-target interaction for a minimum of 50 nanoseconds with relative invariabilities in Rg. The compound inhibited ovarian cancer cell line, PA1 at 1.7 µM. Structural and chemical interpretation of the compound (C2) was done using FT-IR, GC-MS, ESI-MS, 1H and 13C-NMR (1 and 2D). Furthermore, a probable route for gram-scale synthesis of C2 is hinted herein. With the available preliminary data, molecular mechanisms involving dual roles for this potent molecule must be elucidated to understand the possibilities of usage as an anticancer drug.

2.
Curr Cancer Drug Targets ; 19(6): 495-503, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30479215

RESUMO

BACKGROUND: The major attention has been received by the natural products in the prevention of diseases due to their pharmacological role. OBJECTIVE: The major focus of the study was to search for highly potential anti-cancer compounds from marine Streptomyces sp. VITJS4 (NCIM No. 5574). METHODS: Cytotoxic assay was examined by MTT assay on HepG2 cells. Bioassay-guided fractionation of the ethyl acetate extract from the fermented broth led to the isolation of the compound. The lead compound structure was elucidated by combined NMR and MS analysis, and the absolute configuration was assigned by extensive spectroscopic analysis. RESULTS: On the basis of spectroscopic data, the compound was identified as 1, 2 benzenedicarboxylic acid, mono 2-ethylhexyl (BMEH). The compound exhibited in vitro anticancer potential against liver (HepG2) cancer cells. Based on the flow cytometric analysis, it was evident that the BMEH was also effective in arresting the cell cycle at G1 phase. Further, the Western blotting analysis confirmed the down-regulation of Bcl-2 family proteins, and activation of caspase-9 and 3. The molecular docking and dynamics simulation were performed to reveal the activity of the compound over a time period of 10ns. From the molecular dynamics studies, it was found that the stability and compactness were attained by the protein by means of the compound interaction. CONCLUSION: This study highlights our collaborative efforts to ascertain lead molecules from marine actinomycete. This is the first and foremost report to prove the mechanistic studies of the purified compound 1, 2-benzene dicarboxylic acid, mono(2-ethylhexyl) ester isolated from marine Streptomyces sp.VITJS4 against HepG2 cells.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antineoplásicos/farmacologia , Ácidos Ftálicos/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Antifúngicos/química , Antifúngicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ácidos Ftálicos/química , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Domínios Proteicos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Streptomyces/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...