Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 16(2): 1952-60, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27433708

RESUMO

A series of Ruthenium catalysts with different Ru contents supported on gamma-alumina were prepared by deposition-precipitation method. The catalysts were characterized by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), temperature programmed reduction (TPR), CO-chemisorption, surface area and pore-size distribution (PSD) measurements. The catalytic activities were evaluated for the vapour phase hydrogenolysis of glycerol to propanediols. The pore size distribution (PSD) results suggest that Ru loadings considerably affect the pore volume, pore diameter and surface area. The particle size measured from CO-chemisorption and TEM analysis are well correlated to the activity results during the hydrogenolysis reaction. The catalytic properties of Ru/gamma-Al2O3 catalysts were evaluated for the first time over vapour phase hydrogenolysis of glycerol to propanediols.


Assuntos
Óxido de Alumínio/química , Glicerol/química , Nanopartículas/química , Rutênio/química , Catálise , Porosidade
2.
J Nanosci Nanotechnol ; 15(12): 9944-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682438

RESUMO

The Au/MCM-41 nano catalysts were synthesized from four different methods, viz., homogeneous deposition-precipitation, micro-emulsion, impregnation and polyol and their catalytic activities were tested for the vapor phase oxidation of benzyl alcohol to benzaldehyde. The physico-chemical properties of the catalysts were investigated by XRD, TEM, BET surface area, PSD, CO-chemisorption and XPS techniques. The effect of preparation methods, nature of the metal, support and the metal-support interaction in Au/MCM-41 catalysts were studied for the title reaction. The Au/MCM-41 catalysts synthesized from HDP method has shown higher and better catalytic activity as compared to the catalysts prepared by other methods.

3.
J Nanosci Nanotechnol ; 15(7): 5403-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373150

RESUMO

A series of Ru/Carbon catalysts (0.5-6.0 wt%) were prepared by impregnation method. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), CO-chemisorption, surface area and pore-size distribution measurements. The catalytic activities were evaluated for the vapor phase hydrogenation of nitrobenzene. The dispersion measured by CO-uptake values suggests that a decrease of dispersion is observed with increasing Ru loading on carbon support. These findings are well supported by the crystallite size measured from XRD measurements. XPS study reveals the formation of Ru0 after reduction at 573 K for 3 h. The catalysts exhibit high conversion/selectivity at 4.5 wt% Ru loading during hydrogenation reaction. The particle size measured from CO-chemisorption and TEM analysis are related to the TOF during the hydrogenation reaction. Ru/C catalysts are found to show higher conversion/selectivities during hydrogenation of nitrobenzene to aniline.

4.
J Nanosci Nanotechnol ; 15(7): 5391-402, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26373149

RESUMO

Vapor phase dehydration of glycerol to acrolein was investigated over heteropolyacid (HPA) catalysts containing vanadium substituted phosphomolybdic acid (H4PMo11VO40) supported on mesoporous SBA-15. A series of HPA catalysts with HPA loadings varying from 10-50 wt% were prepared by impregnation method on SBA-15 support. The catalysts were characterized by X-ray diffraction, Raman spectroscopy, Fourier Transform infrared spectroscopy, temperature-programmed desorption of NH3, pyridine adsorbed FT-IR spectroscopy, scanning electron microscopy, pore size distribution and specific surface area measurements. The nature of acidic sites was examined by pyridine adsorbed FT-IR spectroscopy. XRD results suggest that the active phase containing HPA was highly dispersed at lower loadings on the support. FT-IR and Raman spectra results confirm that the presence of primary Keggin ion structure of HPA on the support and it was not affected during the preparation of catalysts. Pore size distribution results reveal that all the samples show unimodel pore size distribution with well depicted mesoporous structure. NH3-TPD results suggest that the acidity of catalysts increased with increase of HPA loading. The findings of acidity measurements by FT-IR spectra of pyridine adsorption reveals that the catalysts consist both the Brønsted and Lewis acidic sites and the amount of Brønsted acidic sites are increasing with HPA loading. SBA-15 supported vanadium substituted phosphomolybdic acid catalysts are found to be highly active during the dehydration reaction and exhibited 100% conversion of glycerol (10 wt% of glycerol) and the acrolein selectivity was appreciably changed with HPA active phase loading. The catalytic functionalities during glycerol dehydration are well correlated with surface acidity of the catalysts.


Assuntos
Acroleína/química , Glicerol/química , Molibdênio/química , Ácidos Fosfóricos/química , Dióxido de Silício/química , Vanádio/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...