Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 634: 121-137, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535152

RESUMO

In the present work, we report the preparatory strategy of MgCr-layered double hydroxide (LDH) nanosheets with 90% degree of delamination by employing a formamide-assisted co-precipitation and mild hydrothermal route for the degradation of methylene blue (MB) under solar light exposure. The as-synthesized MgCr-LDH nanosheets were characterized by assorted characterization techniques such as powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, thermogravimetric analysis (TGA), N2 adsorption-desorption measurement, X-ray photoelectron spectroscopy (XPS) and UV-Visible diffused reflectance spectroscopy (UV-DRS). The XRD pattern of MgCr-LDH nanosheets quantified the strain (ε) and dislocation density (δ) of 1.371 lines-2 m-4 and 0.5723 lines m-2 related to the (110) plane with d-spacing value of 1.6169 Ȧ. With a minimum band gap of ∼2.63 eV, the as-synthesized MgCr-LDH nanosheets displayed 90.6% MB photodegradation under the experimental protocols such as catalyst dosage of 30 mg/L, initial MB concentrations of 20 ppm, pH of 7 and time duration of 2 h under solar light exposure. Further, the recyclability test of the photocatalyst signifies material stability up to four successive cycles with 90% retention of MB degradation under sunlight exposure. The superior catalytic performances of the MgCr-LDH nanosheets could be ascertained to the suppression of excitonic recombination and effective light harvestation properties, synergistically contributed by the porous structural aspects via association of uni/multi-lamellar nanosheets, surface defect sites and photoactive Cr3+ cations. Additionally, the surface -OH groups of LDH contributed towards the generation of •OH radicals for triggering the catalytic performances. This type of work advances the novel ideas for establishing highly potent photocatalysts via synergizing structural and surface properties, paving towards effective wastewater treatment.


Assuntos
Hidróxidos , Azul de Metileno , Fotólise , Azul de Metileno/química , Hidróxidos/química , Difração de Raios X
2.
ACS Omega ; 6(45): 30401-30418, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805671

RESUMO

Environmental protection and the necessity of green energy have become fundamental concerns for humankind. However, rapid recombination of photoexcitons in semiconductors often gets in the path of photocatalytic reactions and annoyingly suppresses the photocatalytic activity. In this study, a polypyrrole (PPY)-supported step-scheme (S-scheme) ZnFe2O4@WO3-X (PZFW15) ternary composite was fabricated by a multistep process: hydrothermal and calcination processes, followed by polymerization. During the formation of the heterojunction, the oxygen vacancy (OV) on WO3-X promotes effective separation and increases the redox power of the photogenerated excitons via the built-in internal electric field of S-scheme pathways between ZnF and WO3-X. The successful construction of the S-scheme heterojunction was substantiated through X-ray photoelectron spectroscopy, experimental calculations, radical trapping experiment, and liquid electron spin resonance (ESR) characterization, whereas the existence of OVs was well confirmed by EPR and Raman analyses. Meanwhile, the PPY served as a supporter, and the polaron and bipolaron species of PPY acted as electron and hole acceptors, respectively, which further enhances the charge-carrier transmission and separation in the ternary PZFW15 photocatalyst. The designed ternary nanohybrid (PZFW15) displays outstanding gemifloxacin detoxification (95%, 60 min) and hydrogen generation (657 µmol h-1), i.e., 1.5 and 2.2 times higher than the normal S-scheme ZFW15 heterostructure and pure ZnFe2O4 (ZnF), respectively, with an apparent conversion efficiency of 4.92%. The ESR and trapping experiments indicate that the generated •OH and •O2 - radicals from the PZFW15 photocatalyst are responsible for gemifloxacin degradation. This unique PPY-supported S-scheme heterojunction is also beneficial for the enhanced electron-transfer rate and provides abundant active sites for photocatalytic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...