Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 387: 129581, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517709

RESUMO

Lindane, an organochlorine pesticide, negatively affects living beings and the ecosystem. In this study, the potential of 9 Ascomycetes fungi, isolated from an hexachlorocyclohexane dumpsite soil, was tested for biodegradation of lindane. The strain Pleurostoma richardsiae (FN5) showed lindane biodegradation rate constant (K value) of 0.144 d-1 and a half-life of 4.8d. The formation of intermediate metabolites upon lindane degradation including γ-pentachlorocyclohexene, 2,4-dichlorophenol, phenol, benzene, 1,3- cyclohexadiene, and benzoic acid detected by GC-MS and the potential pathway adopted by the novel fungal strain FN5 for lindane biodegradation has been elucidated. The study of gene profiles with reference to linA and linB in strain FN5 confirmed the same protein family with the reported heterologs from other fungal strains in the NCBI database. This study for the first time provides a thorough understanding of lindane biodegradation by a novel soil-borne Ascomycota fungal strain for its possible application in field-scale bioremediation.


Assuntos
Ascomicetos , Hexaclorocicloexano , Hexaclorocicloexano/metabolismo , Biodegradação Ambiental , Solo , Ecossistema , Cinética , Ascomicetos/metabolismo , Microbiologia do Solo
2.
Bioresour Technol ; 361: 127650, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35907601

RESUMO

Food is an essential commodity for the survival of any form of life on earth. Yet generation of plethora of food waste has significantly elevated the global concern for food scarcity, human and environment deterioration. Also, increasing use of polymers derived from petroleum hydrocarbons has elevated the concerns towards the depletion of this non-renewable resource. In this review, the use of waste food for the production of bio-polymers and their associated challenges has been thoroughly investigated using scientometric analysis. Various categories of food waste including fruit, vegetable, and oily waste can be employed for the production of different biopolymers including polyhydroxyalkanoates, starch, cellulose, collagen and others. The advances in the production of biopolymers through chemical, microbial or enzymatic process that increases the acceptability of these biopolymers has been reviewed. The comprehensive compiled information may assist researchers for addressing and solving the issues pertaining to food wastage and fossil fuel depletion.


Assuntos
Poli-Hidroxialcanoatos , Eliminação de Resíduos , Biopolímeros , Celulose , Alimentos , Humanos
3.
Int J Food Microbiol ; 372: 109691, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35509146

RESUMO

It is necessary to stop the wastage of food during any stage of food chain to resolve the challenge of starvation, hunger and malnutrition in the world. Inception of modern techniques like omics (metagenomics, proteomics, transcriptomics, wasteomics, diseaseomics etc), enzymatic treatments, and artificial intelligence in food waste reduction and management can bring a sustainable solution for food loss management, starvation and environmental challenges. Acceptance of modern techniques while policies formulation by government bodies can substantially strengthen the idea of waste reduction, food security and can easily save the life of around 25,000 children and adults dying of starvation every day. Artificial Intelligence (AI) can bestead current agriculture and food supply chain system to overcome the challenges of nutrition demand, resource depletion, climate change, population growth, and pollution. This communication provides a thorough examination of the concept of food waste management with omics approaches linkages. In addition, the notion of artificial intelligence in food waste transformation and mitigation, as well as present challenges and future prospects have been covered. Overall, this communication would assist decision-makers in identifying economically and environmentally appropriate biorefinery solutions ahead of time.


Assuntos
Inteligência Artificial , Eliminação de Resíduos , Agricultura , Criança , Alimentos , Abastecimento de Alimentos , Humanos
4.
Bioresour Technol ; 351: 127064, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35351555

RESUMO

Globally the generation and mismanagement of waste from fruit processing and post-harvest impose a severe burden on waste management strategies along with environmental pollution, health hazards. Citrus waste is one of such worrying fruit waste, which is rich in several value-added chemicals, including pectin. Pectin is a prebiotic polysaccharide possessing a multitude of health benefits. Citrus pectin has excellent gelling, thickening, water holding capacity, and encapsulating properties, which pave its functionality in versatile industrial fields including food processing and preservation, drug and therapeutic agents, cosmetics, and personal care products. The utilization of citrus wastes to derive valuable bioproducts can offer an effective approach towards sustainable waste management. With the ever-increasing demand, several strategies have been devised to increase the efficiency of pectin recovery from citrus waste. This review article discusses the sources, effect, and technology-mediated valorization of citrus waste, the functional and nutritive application of pectin along with its socio-economic and environmental perspective.


Assuntos
Citrus , Gerenciamento de Resíduos , Citrus/química , Frutas/química , Pectinas , Resíduos/análise
5.
Food Res Int ; 145: 110396, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34112399

RESUMO

Growing demand from the consumers for minimally processed and high-quality food products has raised the scientific quest for foods with improved natural flavours in conjunction with a restricted supplement of additives. In this context, achieving quality and safe food grains and the identification of suitable processing and disinfection technologies have also become the key issues. Microbial contamination is one of the major reasons responsible for the spoilage of food grains. Various sources of contamination such as air and water (both contaminated with dust and dirt), animals (insects, birds, rodents), environmental conditions (rainfall, drought, temperature), unhygienic handling, harvesting, processing equipment and improper storage conditions are responsible for the microbial spoilage of food grains. In order to maintain the food grains safe and un-contaminated, several food processing technologies have been explored and implemented, with the ultimate purpose of maintaining the safety, freshness and nutritional attributes of the food products. Among these technologies, microwave, radiofrequency, infrared, ohmic heating, novel drying methods along with non-thermal methods such as cold plasma, irradiation, ozonation and nanotechnology have attracted much attention because of considerable reduction in the overall processing time with minimum energy consumption. This review aims to discuss the advances involving the said technologies for controlling the microbial contamination of food grains in accordance with their inactivation. Current research status of the thermal and non-thermal emerging technologies for the preservation of food grains as well as perspectives for further research in this area are also elaborated in detail.


Assuntos
Desinfecção , Gases em Plasma , Animais , Manipulação de Alimentos , Qualidade dos Alimentos , Micro-Ondas
6.
Bioresour Technol ; 326: 124734, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33497926

RESUMO

Poly-3-hydroxybutyrate is a biopolymer which has shown tremendous potential for replacing conventional petroleum-based plastics for plummeting the plastic pollution problem. However, the production cost of PHB is high which makes it less attractive for commercial use. To tackle this challenge, various researchers suggest the search for low-cost substrates and energy efficient technologies for PHB production. In this regard, the waste generated from fruit processing industries or fruit wastes could be pre-processed and fermented for effectively generating PHB. Therefore, the aim of this review was to focus on the methods of fruit waste pre-processing and the effect of fermentation variables on PHB production using fruit waste as a substrate. The relevant research findings on the use of different microorganisms, PHB production conditions and fruit waste-based substrates are also covered. Analysis of various studies revealed that pineapple and mixed fruit waste are effective for PHB production.


Assuntos
Frutas , Hidroxibutiratos , Poliésteres
7.
Bioresour Technol ; 311: 123536, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32448640

RESUMO

Polyhydroxybutyrates (PHBs) are a class of biopolymers produced by different microbial species and are biodegradable and biocompatible in nature as opposed to petrochemically derived plastics. PHBs have advanced applications in medical sector, packaging industries, nanotechnology and agriculture, among others. PHB is produced using various feedstocks such as glycerol, dairy wastes, agro-industrial wastes, food industry waste and sugars. Current focus on PHB research has been primarily on reducing the cost of production and, on downstream processing to isolate PHB from cells. Recent advancements to improve the productivity and quality of PHB include genetic modification of producer strain and modification of PHB by blending to develop desirable properties suited to diversified applications. Selection of feedstock plays a critical role in determining the economic feasibility and sustainability of the process. This review provides a bird's eye view of the suitability of different waste resources for producing polyhydroxybutyrate; providing state-of the art information and analysis.


Assuntos
Hidroxibutiratos , Plásticos , Biomassa , Biopolímeros , Resíduos Industriais , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...