Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2736-2739, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018572

RESUMO

Respiratory rate (RR) derived from photoplethysmogram (PPG) during daily activities can be corrupted due to movement and other artefacts. We have investigated the use of ensemble empirical mode decomposition (EEMD) based smart fusion approach for improving the RR extraction from PPG. PPG was recorded while subjects performed five different activities: sitting, standing, climbing and descending stairs, walking, and running. RR was obtained using EEMD and smart fusion. The median absolute error (AE) of the proposed method is superior, median AE = 3.05 (range 3.01 to 3.18) breath/min in estimating RR during five different activities. Therefore, the proposed method can be implemented for overcoming the artefact problems when recording continuous RR monitoring during activities of daily living.


Assuntos
Fotopletismografia , Taxa Respiratória , Atividades Cotidianas , Algoritmos , Humanos , Condições Sociais
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5564-5567, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947116

RESUMO

Sleep quality has a significant impact on human mental and physical health. Detecting sleep-wake stages is of paramount importance in the study of sleep. The gold standard method for sleep-wake stages classification is the multi-sensors based polysomnography (PSG) systems, which is normally recorded in clinical settings. The main drawback of PSG is the inconvenience to the subjects and can hamper the normal sleep. This paper describes an automated approach for classifying sleep-wake stages using finger-tip photoplethysmographic (PPG) signal. The proposed system used statistical features of PPG signal and supervised machine learning models including K-nearest neighbors (KNN) and support vector machine (SVM). The models are trained using 80% events (3486 sleep-wake events) from the dataset and the rest 20% events (872 sleep-wake events) are used for testing. On the test events, cubic KNN, weighted KNN, quadratic SVM and medium Gaussian SVM show 69.27%, 70.53%, 71.33% and 72.36% overall accuracy respectively for predicting the sleep and wake stages. This result advocates that the statistical features of PPG are capable of recognizing the changes in physiological states. The KNN and SVM classifier adopt the statistical features from PPG signal to differentiate between the wake and sleep stages.


Assuntos
Polissonografia , Fases do Sono , Sono , Humanos , Polissonografia/estatística & dados numéricos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...