Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Adv Res ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38447612

RESUMO

INTRODUCTION: Melanoma is a rare but highly malignant form of skin cancer. Although recent targeted and immune-based therapies have improved survival rates by 10-15%, effective melanoma treatment remains challenging. Therefore, novel, combinatorial therapy options such as non-thermal atmospheric pressure plasma (NTP) are being investigated to inhibit and prevent chemoresistance. Although several studies have reported the apoptotic and inhibitory effects of reactive oxygen species produced by NTP in the context of melanoma, the intricate molecular network that determines the role of microRNAs (miRNAs) in regulating NTP-mediated cell death remains unexplored. OBJECTIVES: This study aimed to explore the molecular mechanisms and miRNA networks regulated by NTP-induced oxidative stress in melanoma cells. METHODS: Melanoma cells were exposed to NTP and then subjected to high-throughput miRNA sequencing to identify NTP-regulated miRNAs. Various biological processes and underlying molecular mechanisms were assessed using Alamar Blue, propidium iodide (PI) uptake, cell migration, and clonogenic assays followed by qRT-PCR and flow cytometry. RESULTS: NTP exposure for 3 min was sufficient to modulate the expression of several miRNAs, inhibiting cell growth. Persistent NTP exposure for 5 min increased differential miRNA regulation, PI uptake, and the expression of genes involved in cell cycle arrest and death. qPCR confirmed that miR-200b-3p and miR-215-5p upregulation contributed to decreased cell viability and migration. Mechanistically, inhibiting miR-200b-3p and miR-215-5p in SK-2 cells enhancedZEB1, PI3K, and AKT expression, increasing cell proliferation and viability. CONCLUSION: This study demonstrated that NTP exposure for 5 min results in the differential regulation of miRNAs related to the PI3K-AKT-ZEB1 axis and cell cycle dysregulation to facilitate melanoma suppression.

2.
Front Bioeng Biotechnol ; 9: 779393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957073

RESUMO

Carcinogenesis is a major concern that severely affects the human population. Owing to persistent demand for novel therapies to treat and prohibit this lethal disease, research interest among scientists is drawing its huge focus toward natural products, as they have minimum toxicity comparable with existing treatment methods. The plants produce secondary metabolites, which are known to have the anticancer potential for clinical drug development. Furthermore, the use of nanocarriers could boost the solubility and stability of phytocompounds to obtain site-targeting delivery. The identification of potential phytochemicals in natural compounds would be beneficial for the synthesis of biocompatible nanoemulsions. The present study aimed to investigate the potential cytotoxicity of ethanol extracts of Hibiscus syriacus and Cinnamomum loureirii Nees plant parts on human skin melanoma (G361) and lung adenocarcinoma (A549) cells. Importantly, biochemical analysis results showed the presence of high phenol (50-55 µgGAE/mg) and flavonoids [42-45 µg quercetin equivalents (QE)/mg] contents with good antioxidant activity (40-58%) in C. loureirii Nees plants extracts. This plant possesses potent antiproliferative activity (60-90%) on the malignant G361 and A549 and cell lines correlated with the production of nitric oxide. Especially, C. loureirii plant extracts have major metabolites that exhibit cancer cell death associated with cell cycle arrest. These findings support the potential application of Cinnamomum for the development of therapeutic nanoemulsion in future cancer therapy.

3.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906793

RESUMO

In the field of tissue engineering, there are several issues to consider when designing biomaterials for implants, including cellular interaction, good biocompatibility, and biochemical activity. Biomimetic mineralization has gained considerable attention as an emerging approach for the synthesis of biocompatible materials with complex shapes, categorized organization, controlled shape, and size in aqueous environments. Understanding biomineralization strategies could enhance opportunities for novel biomimetic mineralization approaches. In this regard, mussel-inspired biomaterials have recently attracted many researchers due to appealing features, such as strong adhesive properties on moist surfaces, improved cell adhesion, and immobilization of bioactive molecules via catechol chemistry. This molecular designed approach has been a key point in combining new functionalities into accessible biomaterials for biomedical applications. Polydopamine (PDA) has emerged as a promising material for biomaterial functionalization, considering its simple molecular structure, independence of target materials, cell interactions for adhesion, and robust reactivity for resulting functionalization. In this review, we highlight the strategies for using PDA to induce the biomineralization of hydroxyapatite (HA) on the surface of various implant materials with good mechanical strength and corrosion resistance. We also discuss the interactions between the PDA-HA coating, and several cell types that are intricate in many biomedical applications, involving bone defect repair, bone regeneration, cell attachment, and antibacterial activity.


Assuntos
Biomineralização/efeitos dos fármacos , Indóis/farmacologia , Polímeros/farmacologia , Engenharia Tecidual/métodos , Animais , Biomimética/métodos , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Adesão Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Durapatita/metabolismo , Humanos , Indóis/metabolismo , Osteogênese/efeitos dos fármacos , Polímeros/metabolismo , Engenharia Tecidual/tendências
4.
Sci Rep ; 7: 43361, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240233

RESUMO

Breast cancer is a widely distributed type of cancer in women worldwide, and tumor relapse is the major cause of breast cancer death. In breast cancers, the acquisition of metastatic ability, which is responsible for tumor relapse and poor clinical outcomes, has been linked to the acquisition of the epithelial-mesenchymal transition (EMT) program and self-renewal traits (CSCs) via various signaling pathways. These phenomena confer resistance during current therapies, thus creating a major hurdle in radiotherapy/chemotherapy. The role of very low doses of radiation (LDR) in the context of EMT has not yet to be thoroughly explored. Here, we report that a 0.1 Gy radiation dose reduces cancer progression by deactivating the JAK1/STAT3 pathway. Furthermore, LDR exposure also reduces sphere formation and inhibits the self-renewal ability of breast cancer cells, resulting in an attenuated CD44+/CD24- population. Additionally, in vivo findings support our data, providing evidence that LDR is a promising option for future treatment strategies to prevent cancer metastasis in breast cancer cases.


Assuntos
Neoplasias da Mama/radioterapia , Transição Epitelial-Mesenquimal/efeitos da radiação , Raios gama/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Janus Quinase 1/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos da radiação , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Relação Dose-Resposta à Radiação , Feminino , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Plasmídeos/química , Plasmídeos/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Transfecção , Carga Tumoral/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Chemistry ; 20(44): 14410-20, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25209962

RESUMO

Two new tetracationic hetero-bimetallacycles, compounds 4 and 5, have been constructed from an N,N'-bis(4-(pyridin-4-ylethynyl)phenyl)pyridine-2,6-dicarboxamide ligand (1), and cis-blocked complexes [M(dppf)(OTf)2 ] (dppf=1,1'-bis(diphenylphosphino)ferrocene; OTf=trifluoromethanesulfonate; M=Pd (2), Pt (3)) in CH3 NO2 /CH2 Cl2 (1:1) solvent. Both complexes were isolated with adequate yields as triflate salts and were then characterized using (1) H, (13) C, and (31) P NMR spectroscopy, elemental analysis, UV/Vis spectroscopy, and high-resolution electrospray mass spectrometry (HR-ESMS). The molecular structure of 4 was determined by molecular mechanics force-field calculations. The cytotoxic effect of both new complexes were analyzed against T98G (brain tumor), KB (head and neck cancer), SNU-80 (thyroid cancer), and HEK-293 non-malignant cell lines. The cytotoxicity of complexes 4 and 5 were found to be considerably more effective against cancer cells than reference drug cisplatin. Annexin-V/PI staining, caspase-3/7 activity, and the reduction in mitochondrial membrane potential justify a significant level of apoptosis in complex-treated cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Paládio/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos/síntese química , Piridinas/síntese química , Piridinas/química , Piridinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...