Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 363: 121384, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850922

RESUMO

In the course of this investigation, we undertook the contemplation of a green chemistry paradigm with the express intent of procuring valuable metal, namely gold, from electronic waste (e-waste). In pursuit of this overarching objective, we conceived a procedural framework consisting of two pivotal stages. As an initial stage, we introduced a physical separation procedure relying on the utilization of the Eddy current separator, prior to embarking on the process of leaching from e-waste. Subsequent to the partitioning of metals from the non-metal constituents of waste printed circuit boards (PCB), we initiated an investigation into the hydrogel derived from basil seeds (Ocimum basilicum L.), utilizing it as a biogenic sorbent medium. The thorough characterization of hydrogel extracted from basil seeds involved the application of an array of analytical techniques, encompassing FTIR, XRD, SEM, and BET. The batch sorption experiments show more than 90% uptake in the pH range of 2-5. The sorption capacity of the hydrogel material was evaluated as 188.44 mg g-1 from the Langmuir Isotherm model. The potential interference stemming from a spectrum of other ions, encompassing Al, Cu, Ni, Zn, Co, Cr, Fe, Mn, and Pb was systematically examined. Notably, the sole instance of interference in the context of adsorption of gold ions was observed to be associated with the presence of lead. The application of the hydrogel demonstrated a commendable efficiency in the recovery of Au(III) from the leached solution derived from the waste PCB.


Assuntos
Resíduo Eletrônico , Ouro , Hidrogéis , Ouro/química , Hidrogéis/química , Adsorção , Ocimum basilicum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...