Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 23(8): e13718, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35829667

RESUMO

Qualified medical physicists (QMPs) are in a unique position to influence the creation and application of key performance indicators (KPIs) across diverse practices in health care. Developing KPIs requires the involvement of stakeholders in the area of interest. Fundamentally, KPIs should provide actionable information for the stakeholders using or viewing them. During development, it is important to strongly consider the underlying data collection for the KPI, making it automatic whenever possible. Once the KPI has been validated, it is important to setup a review cycle and be prepared to adjust the underlying data or action levels if the KPI is not performing as intended. Examples of specific KPIs for QMPs of common scopes of practice are provided to act as models to aid in implementation. KPIs are a useful tool for QMPs, regardless of the scope of practice or practice environment, to enhance the safety and quality of care being delivered.


Assuntos
Indicadores de Qualidade em Assistência à Saúde , Humanos
2.
J Appl Clin Med Phys ; 22(7): 27-35, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34231945

RESUMO

PURPOSE: Prostate patients with positive lymph node margins receive an initial course of 45 Gy to the planning target volume (PTV) comprised of prostate, seminal vesicles, and lymph nodes with a 1-cm margin. The prostate is localized via implanted fiducial markers before each fraction is delivered using portal-imaging. However, the pelvic lymph nodes are affixed to the bony anatomy and are not mobile in concert with the prostate. The aim of this study was to determine whether a significant difference in pelvic lymph node coverage exists between planned and delivered external beam therapy treatments for these patients. METHODS: The recorded prostate motions were gathered for 19 patients; conjointly the pelvic lymph node motions were determined by manual registration of the bony anatomy in the kV-images. The difference between the prostate and the bony anatomy coordinates was input into Eclipse as field shifts to represent the deviation in planned vs delivered pelvic lymph node coverage. RESULTS: Structure volume at V(100) was recorded for each patient for two structures: summed pelvic lymph nodes (LN CTV) and pelvic lymph nodes +1 cm margin (LN PTV) to express their contribution to the PTV. For the LN PTV, the average difference between the planned coverage and calculated delivered coverage was 3.5%, with a paired t-test value of P = 0.005. Based upon bony anatomy registration, 26% of patients received less than 95% dose coverage using V(100) criteria for LN PTV. Dose value differences between the two plans at minimum were 6.96 ± 6.23 Gy, at mean were 0.54 ± 0.40 Gy, and at maximum were 0.10 ± 0.29 Gy. For the LN CTV, the average difference between the planned coverage and calculated delivered coverage was 1%, with a paired t-test value of P = 0.53. CONCLUSIONS: The results indicate a significant difference exists between the planned coverage and calculated delivered coverage for the LN PTV. There was no significant difference found for the LN CTV. We conclude that lymph node motion must be considered with the prostate motion when aligning patients before each fraction.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Humanos , Linfonodos , Masculino , Pelve/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
3.
J Appl Clin Med Phys ; 21(2): 50-59, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32039545

RESUMO

In breast-targeted intraoperative radiotherapy (TARGIT) clinical trials (TARGIT-B, TARGIT-E, TARGIT-US), a single fraction of radiation is delivered to the tumor bed during surgery with 1.5- to 5.0-cm diameter spherical applicators and an INTRABEAM x-ray source (XRS). This factory-calibrated XRS is characterized by two depth-dose curves (DDCs) named "TARGIT" and "V4.0." Presently, the TARGIT DDC is used to treat patients enrolled in clinical trials; however, the V4.0 DDC is shown to better represent the delivered dose. Therefore, we reevaluate the delivered prescriptions under the TARGIT protocols using the V4.0 DDC. A 20-Gy dose was prescribed to the surface of the spherical applicator, and the TARGIT DDC was used to calculate the treatment time. For a constant treatment time, the V4.0 DDC was used to recalculate the dosimetry to evaluate differences in dose rate, dose, and equivalent dose in 2-Gy fractions (EQD2) for an α/ß = 3.5 Gy (endpoint of locoregional relapse). At the surface of the tumor bed (i.e., spherical applicator surface), the calculations using the V4.0 DDC predicted increased values for dose rate (43-16%), dose (28.6-23.2 Gy), and EQD2 (95-31%) for the 1.5- to 5.0-cm diameter spherical applicator sizes, respectively. In general, dosimetric differences are greatest for the 1.5-cm diameter spherical applicator. The results from this study can be interpreted as a reevaluation of dosimetry or the dangers of underdosage, which can occur if the V4.0 DDC is inadvertently used for TARGIT clinical trial patients. Because the INTRABEAM system is used in TARGIT clinical trials, accurate knowledge about absorbed dose is essential for making meaningful comparisons between radiation treatment modalities, and reproducible treatment delivery is imperative. The results of this study shed light on these concerns.


Assuntos
Neoplasias da Mama/radioterapia , Calibragem/normas , Cuidados Intraoperatórios , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/normas , Relação Dose-Resposta à Radiação , Feminino , Humanos , Radiometria
4.
J Appl Clin Med Phys ; 21(3): 20-31, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31976605

RESUMO

INTRODUCTION: INTRABEAM x-ray sources (XRSs) have distinct output characteristics due to subtle variations between the ideal and manufactured products. The objective of this study is to intercompare 15 XRSs and to dosimetrically quantify the impact of manufacturing variations on the delivered dose. METHODS AND MATERIALS: The normality of the XRS datasets was evaluated with the Shapiro-Wilk test, the accuracy of the calibrated depth-dose curves (DDCs) was validated with ionization chamber measurements, and the shape of each DDC was evaluated using depth-dose ratios (DDRs). For 20 Gy prescribed to the spherical applicator surface, the dose was computed at 5-mm and 10-mm depths from the spherical applicator surface for all XRSs. RESULTS: At 5-, 10-, 20-, and 30-mm depths from the source, the coefficient of variation (CV) of the XRS output for 40 kVp was 4.4%, 2.8%, 2.0%, and 3.1% and for 50 kVp was 4.2%, 3.8%, 3.8%, and 3.4%, respectively. At a 20-mm depth from the source, the 40-kVp energy had a mean output in Gy/Minute = 0.36, standard deviation (SD) = 0.0072, minimum output = 0.34, and maximum output = 0.37 and a 50-kVp energy had a mean output = 0.56, SD = 0.021, minimum output = 0.52, and maximum output = 0.60. We noted the maximum DRR values of 2.8% and 2.5% for 40 kVp and 50 kVp, respectively. For all XRSs, the maximum dosimetric effect of these variations within a 10-mm depth of the applicator surface is ≤ 2.5%. The CV increased as depth increased and as applicator size decreased. CONCLUSION: The American Association of Physicist in Medicine Task Group-167 requires that the impurities in radionuclides used for brachytherapy produce ≤ 5.0% dosimetric variations. Because of differences in an XRS output and DDC, we have demonstrated the dosimetric variations within a 10-mm depth of the applicator surface to be ≤ 2.5%.


Assuntos
Braquiterapia/instrumentação , Imagens de Fantasmas , Radiometria/instrumentação , Humanos , Dosagem Radioterapêutica , Raios X
5.
Radiol Oncol ; 55(1): 106-115, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885244

RESUMO

BACKGROUND: The aim of the study was to develop and assess a technique for the optimization of breast electronic tissue compensation (ECOMP) treatment plans based on the breast radius and separation. MATERIALS AND METHODS: Ten ECOMP plans for 10 breast cancer patients delivered at our institute were collected for this work. Pre-treatment CT-simulation images were anonymized and input to a framework for estimation of the breast radius and separation for each axial slice. Optimal treatment fluence was estimated based on the breast radius and separation, and a total beam fluence map for both medial and lateral fields was generated. These maps were then imported into the Eclipse Treatment Planning System and used to calculate a dose distribution. The distribution was compared to the original treatment hand-optimized by a medical dosimetrist. An additional comparison was performed by generating plans assuming a single tissue penetration depth determined by averaging the breast radius and separation over the entire treatment volume. Comparisons between treatment plans used the dose homogeneity index (HI; lower number is better). RESULTS: HI was non-inferior between our algorithm (HI = 12.6) and the dosimetrist plans (HI = 9.9) (p-value > 0.05), and was superior than plans obtained using a single penetration depth (HI = 17.0) (p-value < 0.05) averaged over the 10 collected plans. Our semi-supervised algorithm takes approximately 20 seconds for treatment plan generation and runs with minimal user input, which compares favorably with the dosimetrist plans that can take up to 30 minutes of attention for full optimization. CONCLUSIONS: This work indicates the potential clinical utility of a technique for the optimization of ECOMP breast treatments.


Assuntos
Algoritmos , Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Humanos , Dosagem Radioterapêutica , Tomografia Computadorizada por Raios X
6.
Med Dosim ; 44(1): 30-34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29525491

RESUMO

Our study aimed to correlate the overall 3-dimensional (3-D) shape of the breast to the compensation depth to produce a homogeneous dose distribution using the electronic tissue compensation (ECOMP) treatment technique. The study involved creating a number of semioval water phantoms with the diameter of the larger axis representing the breast separation and the shorter axis representing the distance from the chest wall to the apex of the breast. Multiple plans with 2 tangential fields were created for each phantom using different transmission penetration depths (TPDs) to determine the optimum TPD value based on the evaluation of dose uniformity and maximum hot spot. Optimum TPD values from the semioval water phantom plans were plotted on a graph as a function of separation and radius and were used as guidelines to choose the optimum TPD for the breast patient's cases. A total of 10 patients who had been treated with radiation therapy using ECOMP tangential fields were randomly selected. The separation and the radius of the breast were measured for 3 regions (superior, middle, and inferior) to retrospectively determine the optimum TPD from the graph for each region. These TPD values were then used to plan the breast cases. For all the patients studied, the optimized TPD technique produced a lower average homogeneity index (HI) value of 0.658 than the standard ECOMP technique of 0.856. These results showed that optimized TPD technique produced a more homogeneous dose distribution than the standard ECOMP technique. By measuring the breast size based on breast separation and the chest wall-to-apex distance at different locations along the superior-inferior axis of the breast, the optimum TPD can be determined at each location to provide a homogeneous dose distribution. A module can be created within the planning system to automatically assign the optimum TPD for both tangential fields so uniform fluence maps can be achieved throughout the whole breast volume. This method can serve as a guideline in ECOMP during the treatment planning to obtain a homogeneous dose distribution.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Feminino , Humanos , Doses de Radiação , Estudos Retrospectivos
7.
J Appl Clin Med Phys ; 19(5): 389-397, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29947073

RESUMO

PURPOSE: The aim of this study was to develop a model that optimizes the fiducial marker locations in the prostate to increase detectability of the markers in the projected EPID images during VMAT treatments. METHODS AND MATERIALS: The fiducial marker tracking capability for each arc was evaluated through a proposed formula. The output of the formula, a detectability score, was calculated with the in-house developed software written in MATLAB (The Mathworks, Inc., Natick, MA, USA). Three unique weighting factors were added to penalize the detectability score. The detectability scores of four different patterns containing 40 combinations of simulated fiducial marker locations were evaluated with 101 previously treated prostate treatment plans (containing 202 individual arcs). The results were analyzed for each pattern group and each marker separation distance on the transverse plane. RESULTS: The maximum detectability of the markers occurred when they were placed between 10 and 15 mm from the center of the prostate in the transverse plane and 6-13 mm in the superior-inferior direction. The detectability decreased when the markers were placed beyond 20 mm in both directions. CONCLUSIONS: The fiducial marker-based detectability score can be used to predict the real-time tracking capability. Suggestions for optimal insertion locations were given to improve prostate motion management using MV imaging.


Assuntos
Neoplasias da Próstata/radioterapia , Marcadores Fiduciais , Humanos , Masculino , Movimento (Física) , Próstata
8.
Clin Cancer Res ; 23(17): 5055-5065, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28630212

RESUMO

Purpose: While stereotactic body radiotherapy (SBRT) can reduce tumor volumes in patients with metastatic renal cell carcinoma (mRCC), little is known regarding the immunomodulatory effects of high-dose radiation in the tumor microenvironment. The main objectives of this pilot study were to assess the safety and feasibility of nephrectomy following SBRT treatment of patients with mRCC and analyze the immunological impact of high-dose radiation.Experimental Design: Human RCC cell lines were irradiated and evaluated for immunomodulation. In a single-arm feasibility study, patients with mRCC were treated with 15 Gray SBRT at the primary lesion in a single fraction followed 4 weeks later by cytoreductive nephrectomy. RCC specimens were analyzed for tumor-associated antigen (TAA) expression and T-cell infiltration. The trial has reached accrual (ClinicalTrials.gov identifier: NCT01892930).Results: RCC cells treated in vitro with radiation had increased TAA expression compared with untreated tumor cells. Fourteen patients received SBRT followed by surgery, and treatment was well-tolerated. SBRT-treated tumors had increased expression of the immunomodulatory molecule calreticulin and TAA (CA9, 5T4, NY-ESO-1, and MUC-1). Ki67+ -proliferating CD8+ T cells and FOXP3+ cells were increased in SBRT-treated patient specimens in tumors and at the tumor-stromal interface compared with archived patient specimens.Conclusions: It is feasible to perform nephrectomy following SBRT with acceptable toxicity. Following SBRT, patient RCC tumors have increased expression of calreticulin, TAA, as well as a higher percentage of proliferating T cells compared with archived RCC tumors. Collectively, these studies provide evidence of immunomodulation following SBRT in mRCC. Clin Cancer Res; 23(17); 5055-65. ©2017 AACR.


Assuntos
Carcinoma de Células Renais/radioterapia , Procedimentos Cirúrgicos de Citorredução/métodos , Nefrectomia/métodos , Radiocirurgia/métodos , Adulto , Idoso , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Projetos Piloto , Radiocirurgia/efeitos adversos
9.
J Appl Clin Med Phys ; 17(5): 273-282, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27685140

RESUMO

Detection and accurate quantification of treatment delivery errors is important in radiation therapy. This study aims to evaluate the accuracy of DVH based QA in quantifying delivery errors. Eighteen previously treated VMAT plans (prostate, H&N, and brain) were randomly chosen for this study. Conventional IMRT delivery QA was done with the ArcCHECK diode detector for error-free plans and plans with the following modifications: 1) induced monitor unit differences up to ± 3.0%, 2) control point deletion (3, 5, and 8 control points were deleted for each arc), and 3) gantry angle shift (2° uniform shift clockwise and counterclockwise). 2D and 3D distance-to-agreement (DTA) analyses were performed for all plans with SNC Patient software and 3DVH software, respectively. Subsequently, accuracy of the reconstructed DVH curves and DVH parameters in 3DVH software were analyzed for all selected cases using the plans in the Eclipse treatment planning system as standard. 3D DTA analysis for error-induced plans generally gave high pass rates, whereas the 2D evaluation seemed to be more sensitive to detecting delivery errors. The average differences for DVH parameters between each pair of Eclipse recalculation and 3DVH prediction were within 2% for all three types of error-induced treatment plans. This illustrates that 3DVH accurately quantifies delivery errors in terms of actual dose delivered to the patients. 2D DTA analysis should be routinely used for clinical evaluation. Any concerns or dose discrepancies should be further analyzed through DVH-based QA for clinically relevant results and confirmation of a conventional passing-rate-based QA.


Assuntos
Algoritmos , Neoplasias Encefálicas/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias da Próstata/radioterapia , Garantia da Qualidade dos Cuidados de Saúde , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Masculino , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Software
10.
Pract Radiat Oncol ; 6(6): e329-e335, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27349638

RESUMO

BACKGROUND: By avoiding chest wall resection, iridium-192 (Ir-192) high-dose-rate (HDR) intraoperative brachytherapy (IOBT) and video-assisted thoracoscopic surgery (VATS) might improve outcomes for high-risk patients requiring surgical resection for pulmonary malignancy with limited pleura and/or chest wall involvement. METHODS AND MATERIALS: Seven patients with non-small cell lung cancer involving the pleura or chest wall underwent VATS pulmonary resections combined with HDR IOBT. After tumor extraction, an Ir-192 source was delivered via a Freiburg applicator to intrathoracic sites with potential for R1-positive surgical margins. The number of catheters, dwell position along each catheter, prescription depth, and dose were customized based on clinical needs. RESULTS: Six patients had pT3N0M0 non-small cell lung cancers. A seventh case was a recurrent sarcomatoid carcinoma. One case required conversion to open thoracotomy for pneumonectomy with en bloc chest wall resection. There were no intraoperative complications and average operative time was 5.8 hours. Five of seven patients without transmural chest wall involvement underwent rib-sparing resection. Four of the 6 patients treated with VATS and IORT remain alive in follow-up without evidence of local recurrence (median follow-up, 25 months). Noted toxicities were recurrent postoperative pneumothorax, pleural effusion with persistent chest wall pain, avid fibrosis at 2 years of follow-up, and a late traumatic rib fracture. CONCLUSIONS: HDR IOBT with Ir-192 via VATS is technically feasible and safe for intrathoracic disease with pleural and/or limited chest wall involvement. Short-term morbidity associated with chest wall resection may be reduced. Additional study is required to define long-term benefits.


Assuntos
Braquiterapia/métodos , Carcinoma Pulmonar de Células não Pequenas/terapia , Cuidados Intraoperatórios/métodos , Neoplasias Pulmonares/terapia , Neoplasias Pleurais/terapia , Neoplasias de Tecidos Moles/terapia , Cirurgia Torácica Vídeoassistida/métodos , Parede Torácica/cirurgia , Humanos , Margens de Excisão , Procedimentos Cirúrgicos Minimamente Invasivos , Tratamentos com Preservação do Órgão , Pneumonectomia , Costelas
11.
J Appl Clin Med Phys ; 17(2): 165-173, 2016 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-27074481

RESUMO

Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional function is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference tolerance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty function, then, may substantially increase the pass rates for planar dose comparisons. Meanwhile, the types of uncertainties incorporated into the function (and their associated quantitative estimates, as described in the software user's manual) may not be an accurate estimation of actual measurement uncertainty, depending on the user's measurement conditions. Pass rates listed in published reports, comparisons between institutions or simply separate workstations, or comparisons with the calculation methods of other vendors, should clearly indicate whether or not the Measurement Uncertainty function is used, since it has the potential to substantially inflate pass rates for typical IMRT and VMAT dose planes.


Assuntos
Algoritmos , Neoplasias/radioterapia , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Humanos , Dosagem Radioterapêutica , Software , Incerteza
12.
Radiol Oncol ; 50(1): 121-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27069458

RESUMO

BACKGROUND: This study is to report 1) the sensitivity of intensity modulated radiation therapy (IMRT) QA method for clinical volumetric modulated arc therapy (VMAT) plans with multi-leaf collimator (MLC) leaf errors that will not trigger MLC interlock during beam delivery; 2) the effect of non-beam-hold MLC leaf errors on the quality of VMAT plan dose delivery. MATERIALS AND METHODS: Eleven VMAT plans were selected and modified using an in-house developed software. For each control point of a VMAT arc, MLC leaves with the highest speed (1.87-1.95 cm/s) were set to move at the maximal allowable speed (2.3 cm/s), which resulted in a leaf position difference of less than 2 mm. The modified plans were considered as 'standard' plans, and the original plans were treated as the 'slowing MLC' plans for simulating 'standard' plans with leaves moving at relatively lower speed. The measurement of each 'slowing MLC' plan using MapCHECK®2 was compared with calculated planar dose of the 'standard' plan with respect to absolute dose Van Dyk distance-to-agreement (DTA) comparisons using 3%/3 mm and 2%/2 mm criteria. RESULTS: All 'slowing MLC' plans passed the 90% pass rate threshold using 3%/3 mm criteria while one brain and three anal VMAT cases were below 90% with 2%/2 mm criteria. For ten out of eleven cases, DVH comparisons between 'standard' and 'slowing MLC' plans demonstrated minimal dosimetric changes in targets and organs-at-risk. CONCLUSIONS: For highly modulated VMAT plans, pass rate threshold (90%) using 3%/3mm criteria is not sensitive in detecting MLC leaf errors that will not trigger the MLC leaf interlock. However, the consequential effects of non-beam hold MLC errors on target and OAR doses are negligible, which supports the reliability of current patient-specific IMRT quality assurance (QA) method for VMAT plans.

13.
J Appl Clin Med Phys ; 17(1): 12-21, 2016 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-26894361

RESUMO

The Eclipse treatment planning system uses a single dosimetric leaf gap (DLG) value to retract all multileaf collimator leaf positions during dose calculation to model the rounded leaf ends. This study evaluates the dosimetric impact of the 2D variation of DLG on clinical treatment plans based on their degree of fluence modulation. In-house software was developed to retrospectively apply the 2D variation of DLG to 61 clinically treated VMAT plans, as well as to several test plans. The level of modulation of the VMAT cases were determined by calculating their modulation complexity score (MCS). Dose measurements were done using the MapCHECK device at a depth of 5.0 cm for plans with and without the 2D DLG correction. Measurements were compared against predicted dose planes from the TPS using absolute 3%/3 mm and 2%/2 mm gamma criteria for test plans and for VMAT cases, respectively. The gamma pass rate for the 2 mm, 4 mm, and 6 mm sweep test plans increased by 23.2%, 28.7%, and 26.0%, respectively, when the measurements were corrected with 2D variation of DLG. The clinical anal VMAT cases, which had very high MLC modulation, showed the most improvement. The majority of the improvement occurred for doses created by the 1.0 cm width leaves for both the test plans and the VMAT cases. The gamma pass rates for the highly modulated head and neck (H&N) cases, moderately modulated prostate and esophageal cases, and minimally modulated brain cases improved only slightly when corrected with 2D variation of DLG. This is because these cases did not employ the 1.0 cm width leaves for dose calculation and delivery. These data suggest that, at the very least, the TPS plans with highly modulated fluences created by the 1.0 cm fields require 2D DLG correction. Incorporating the 2D variation of DLG for the highly modulated clinical treatment plans improves their planar dose gamma pass rates, especially for fields employing the outer 1.0 cm width MLC leaves. This is because there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value modeled by the TPS for dose calculation.


Assuntos
Modelos Teóricos , Neoplasias/radioterapia , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Dosagem Radioterapêutica
14.
Radiol Oncol ; 49(3): 291-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26401136

RESUMO

BACKGROUND: Volumetric modulated arc therapy (VMAT) has quickly become accepted as standard of care for the treatment of prostate cancer based on studies showing it is able to provide faster delivery with adequate target coverage and reduced monitor units while maintaining organ at risk (OAR) sparing. This study aims to demonstrate the potential to increase dose conformality with increased planner control and OAR sparing using a hybrid treatment technique compared to VMAT. METHODS: Eleven patients having been previously treated for prostate cancer with VMAT techniques were replanned with a hybrid technique on Varian Treatment Planning System. Multiple static IMRT fields (2 to 3) were planned initially based on critical OAR to reduce dose but provide some planning treatment volume (PTV) coverage. This was used as a base dose plan to provide 30-35% coverage for a single arc VMAT plan. RESULTS: The clinical VMAT plan was used as a control for the purposes of comparison. Average of all OAR sparing between the hybrid technique and VMAT showed the hybrid plan delivering less dose in almost all cases except for V80 of the bladder and maximum dose to right femoral head. PTV coverage was superior with the VMAT technique. Monitor unit differences varied, with the hybrid plan able to deliver fewer units 37% of the time, similar results 18% of the time, and higher units 45% of the time. On average, the hybrid plan delivered 10% more monitor units. CONCLUSIONS: The hybrid plan can be delivered in a single gantry rotation combining aspects of VMAT with regions of dynamic intensity modulated radiation therapy (IMRT) within the treatment arc.

15.
Med Phys ; 41(11): 111711, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25370625

RESUMO

PURPOSE: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. METHODS: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. RESULTS: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3-0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. CONCLUSIONS: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need to correct the TPS plans, especially those with high modulation (narrow dynamic MLC gap), with 2D variation of DLG.


Assuntos
Doses de Radiação , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Humanos , Movimento (Física) , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Reprodutibilidade dos Testes
16.
Med Phys ; 40(5): 051704, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23635252

RESUMO

PURPOSE: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ["An effective correction algorithm for off-axis portal dosimetry errors," Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. METHODS: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. RESULTS: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone. As in the 1D correction case, the 2D algorithm leaves the portal dosimetry process virtually unchanged in the central portion of the detector, and thus these correction algorithms are not needed for centrally located fields of moderate size (at least, in the case of 6 MV beam energy). CONCLUSION: The 2D correction improves the portal dosimetry results for those fields for which the 1D correction proves insufficient, especially in the inplane, off-axis regions of the detector. This 2D correction neglects the relatively smaller discrepancies that may be caused by backscatter from nonuniform machine components downstream from the detecting layer.


Assuntos
Algoritmos , Artefatos , Processamento de Imagem Assistida por Computador/instrumentação , Radiometria/instrumentação , Equipamentos e Provisões Elétricas , Humanos
17.
J Appl Clin Med Phys ; 13(4): 3736, 2012 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-22766944

RESUMO

This study compares the EPID dosimetry algorithms of two commercial systems for pretreatment QA, and analyzes dosimetric measurements made with each system alongside the results obtained with a standard diode array. 126 IMRT fields are examined with both EPID dosimetry systems (EPIDose by Sun Nuclear Corporation, Melbourne FL, and Portal Dosimetry by Varian Medical Systems, Palo Alto CA) and the diode array, MapCHECK (also by Sun Nuclear Corporation). Twenty-six VMAT arcs of varying modulation complexity are examined with the EPIDose and MapCHECK systems. Optimization and commissioning testing of the EPIDose physics model is detailed. Each EPID IMRT QA system is tested for sensitivity to critical TPS beam model errors. Absolute dose gamma evaluation (3%, 3 mm, 10% threshold, global normalization to the maximum measured dose) yields similar results (within 1%-2%) for all three dosimetry modalities, except in the case of off-axis breast tangents. For these off-axis fields, the Portal Dosimetry system does not adequately model EPID response, though a previously-published correction algorithm improves performance. Both MapCHECK and EPIDose are found to yield good results for VMAT QA, though limitations are discussed. Both the Portal Dosimetry and EPIDose algorithms, though distinctly different, yield similar results for the majority of clinical IMRT cases, in close agreement with a standard diode array. Portal dose image prediction may overlook errors in beam modeling beyond the calculation of the actual fluence, while MapCHECK and EPIDose include verification of the dose calculation algorithm, albeit in simplified phantom conditions (and with limited data density in the case of the MapCHECK detector). Unlike the commercial Portal Dosimetry package, the EPIDose algorithm (when sufficiently optimized) allows accurate analysis of EPID response for off-axis, asymmetric fields, and for orthogonal VMAT QA. Other forms of QA are necessary to supplement the limitations of the Portal Vision Dosimetry system.


Assuntos
Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica/normas , Algoritmos , Humanos , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos
18.
Med Phys ; 38(11): 6053-64, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22047370

RESUMO

PURPOSE: The most common metric for comparing measured to calculated dose, such as for pretreatment quality assurance of intensity-modulated photon fields, is a pass rate (%) generated using percent difference (%Diff), distance-to-agreement (DTA), or some combination of the two (e.g., gamma evaluation). For many dosimeters, the grid of analyzed points corresponds to an array with a low areal density of point detectors. In these cases, the pass rates for any given comparison criteria are not absolute but exhibit statistical variability that is a function, in part, on the detector sampling geometry. In this work, the authors analyze the statistics of various methods commonly used to calculate pass rates and propose methods for establishing confidence intervals for pass rates obtained with low-density arrays. METHODS: Dose planes were acquired for 25 prostate and 79 head and neck intensity-modulated fields via diode array and electronic portal imaging device (EPID), and matching calculated dose planes were created via a commercial treatment planning system. Pass rates for each dose plane pair (both centered to the beam central axis) were calculated with several common comparison methods: %Diff/DTA composite analysis and gamma evaluation, using absolute dose comparison with both local and global normalization. Specialized software was designed to selectively sample the measured EPID response (very high data density) down to discrete points to simulate low-density measurements. The software was used to realign the simulated detector grid at many simulated positions with respect to the beam central axis, thereby altering the low-density sampled grid. Simulations were repeated with 100 positional iterations using a 1 detector/cm(2) uniform grid, a 2 detector/cm(2) uniform grid, and similar random detector grids. For each simulation, %/DTA composite pass rates were calculated with various %Diff/DTA criteria and for both local and global %Diff normalization techniques. RESULTS: For the prostate and head/neck cases studied, the pass rates obtained with gamma analysis of high density dose planes were 2%-5% higher than respective %/DTA composite analysis on average (ranging as high as 11%), depending on tolerances and normalization. Meanwhile, the pass rates obtained via local normalization were 2%-12% lower than with global maximum normalization on average (ranging as high as 27%), depending on tolerances and calculation method. Repositioning of simulated low-density sampled grids leads to a distribution of possible pass rates for each measured/calculated dose plane pair. These distributions can be predicted using a binomial distribution in order to establish confidence intervals that depend largely on the sampling density and the observed pass rate (i.e., the degree of difference between measured and calculated dose). These results can be extended to apply to 3D arrays of detectors, as well. CONCLUSIONS: Dose plane QA analysis can be greatly affected by choice of calculation metric and user-defined parameters, and so all pass rates should be reported with a complete description of calculation method. Pass rates for low-density arrays are subject to statistical uncertainty (vs. the high-density pass rate), but these sampling errors can be modeled using statistical confidence intervals derived from the sampled pass rate and detector density. Thus, pass rates for low-density array measurements should be accompanied by a confidence interval indicating the uncertainty of each pass rate.


Assuntos
Doses de Radiação , Controle de Qualidade , Dosagem Radioterapêutica
19.
Radiol Oncol ; 44(2): 124-30, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22933903

RESUMO

BACKGROUND: The purpose of this study is to implement an electronic method to perform and analyze intensity-modulated radiation therapy quality assurance (IMRT QA) using an aSi megavoltage electronic portal imaging device in a network comprised of independent treatment planning, record and verify (R&V), and delivery systems. METHODS: A verification plan was generated in the treatment planning system using the actual treatment plan of a patient. After exporting the treatment fields to the R&V system, the fields were delivered in QA mode with the aSi imager deployed. The resulting dosimetric images are automatically stored in a DICOM-RT format in the delivery system treatment console computer. The relative dose density images are subsequently pushed to the R&V system. The absolute dose images are then transferred electronically from the treatment console computer to the treatment planning system and imported into the verification plan in the dosimetry work space for further analysis. Screen shots of the gamma evaluation and isodose comparison are imported into the R&V system as an electronic file (e.g. PDF) to be reviewed prior to initiation of patient treatment. A relative dose image predicted by the treatment planning system can also be sent to the R&V system to be compared with the relative dose density image measured with the aSi imager. RESULTS: Our department does not have integrated planning, R&V, and delivery systems. In spite of this, we are able to fully implement a paperless and filmless IMRT QA process, allowing subsequent analysis and approval to be more efficient, while the QA document is directly attached to its specific patient chart in the R&V system in electronic form. The calculated and measured relative dose images can be compared electronically within the R&V system to analyze the density differences and ensure proper dose delivery to patients. CONCLUSIONS: In the absence of an integrated planning, verifying, and delivery system, we have shown that it is nevertheless possible to develop a completely electronic IMRT QA process.

20.
Med Phys ; 36(9): 4089-94, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19810481

RESUMO

Portal dosimetric images acquired for IMRT pretreatment verification show dose errors of up to 15% near the detector edges as compared to dose predictions calculated by a treatment planning system for these off-axis regions. A method is proposed to account for these off-axis effects by precisely correcting the off-axis output factors, which calibrate the imager for absolute dose. Using this method, agreement between the predicted and the measured doses improves by up to 15% for fields near the detector edges, resulting in passing rate improvements of as much as 60% for gamma evaluation of 3 mm, 3% within the collimator jaws.


Assuntos
Algoritmos , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/radioterapia , Mama/efeitos da radiação , Neoplasias da Mama/radioterapia , Calibragem , Feminino , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA