Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 321(2): 319-30, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18601915

RESUMO

Limb bud outgrowth in chicken embryos is initiated during the third day of development by Fibroblast Growth Factor 8 (FGF8) produced by the newly formed apical ectodermal ridge (AER). One of the earliest effects of this induction is a change in the properties of the limb field mesoderm leading to bulging of the limb buds from the body wall. Heintzelman et al. [Heintzelman, K.F., Phillips, H.M., Davis, G.S., 1978. Liquid-tissue behavior and differential cohesiveness during chick limb budding. J. Embryol. Exp. Morphol. 47, 1-15.] suggested that budding of the limbs is caused by a higher liquid-like cohesivity of limb bud tissue compared with flank. We sought additional evidence relevant to this hypothesis by performing direct measurements of the effective surface tension, a measure of relative tissue cohesivity, of 4-day embryonic chicken wing and leg bud mesenchymal tissue, and adjacent flank mesoderm. As predicted, the two types of limb tissues were 1.5- to 2-fold more cohesive than the flank tissue. These differences paralleled cell number and volume density differences: 4-day limb buds had 2- to 2.5-fold as many cells per unit area of tissue as surrounding flank, a difference also seen at 3 days, when limb budding begins. Exposure of flank tissue to exogenous FGF8 for 24 h increased its cell number and raised its cohesivity to limb-like values. Four-day flank tissue exhibited a novel and unique active rebound response to compression, which was suppressed by the drug latrunculin and therefore dependent on an intact actin cytoskeleton. Correspondingly, flank at this stage expressed high levels of alpha-smooth muscle actin (SMA) mRNA and protein and a dense network of microfilaments. Treatment of flank with FGF8 eliminated the rebound response. We term material properties of tissues, such as cohesivity and mechanical excitability, the "physical phenotype", and propose that changes thereof are driving forces of morphogenesis. Our results indicate that two independent aspects of the physical phenotype of flank mesoderm can be converted to a limb-like state in response to treatment with FGF8. The higher tissue cohesivity induced by this effect will cause the incipient limb bud to phase separate from the surrounding flank, while the active mechanical response of the flank could help ensure that the limb bud bulges out from, rather than becoming engulfed by, this less cohesive tissue.


Assuntos
Extremidades/embriologia , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mesoderma/fisiologia , Fenótipo , Actinas/metabolismo , Animais , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Embrião de Galinha , Primers do DNA/genética , Immunoblotting , Imuno-Histoquímica , Microscopia Eletrônica
2.
BMC Biol ; 6: 17, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18426587

RESUMO

BACKGROUND: Thermogenic brown adipose tissue has never been described in birds or other non-mammalian vertebrates. Brown adipocytes in mammals are distinguished from the more common white fat adipocytes by having numerous small lipid droplets rather than a single large one, elevated numbers of mitochondria, and mitochondrial expression of the nuclear gene UCP1, the uncoupler of oxidative phosphorylation responsible for non-shivering thermogenesis. RESULTS: We have identified in vitro inductive conditions in which mesenchymal cells isolated from the embryonic chicken limb bud differentiate into avian brown adipocyte-like cells (ABALCs) with the morphological and many of the biochemical properties of terminally differentiated brown adipocytes. Avian, and as we show here, lizard species lack the gene for UCP1, although it is present in amphibian and fish species. While ABALCs are therefore not functional brown adipocytes, they are generated by a developmental pathway virtually identical to brown fat differentiation in mammals: both the common adipogenic transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma), and a coactivator of that factor specific to brown fat differentiation in mammals, PGC1alpha, are elevated in expression, as are mitochondrial volume and DNA. Furthermore, ABALCs induction resulted in strong transcription from a transfected mouse UCP1 promoter. CONCLUSION: These findings strongly suggest that the brown fat differentiation pathway evolved in a common ancestor of birds and mammals and its thermogenicity was lost in the avian lineage, with the degradation of UCP1, after it separated from the mammalian lineage. Since this event occurred no later than the saurian ancestor of birds and lizards, an implication of this is that dinosaurs had neither UCP1 nor canonically thermogenic brown fat.


Assuntos
Adipócitos Marrons/citologia , Evolução Biológica , Aves/anatomia & histologia , Diferenciação Celular/genética , Animais , Aves/embriologia , Aves/genética , Células Cultivadas , Embrião de Galinha , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...