Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 11(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35890032

RESUMO

Transcription factors (TFs) play an important role in plant development; however, their role during viral infection largely remains unknown. The present study was designed to uncover the role transcription factors play in Cucumber mosaic virus (CMV) infection. During the screening of an Arabidopsis thaliana (Col-0) transcription factor library, using the CMV 2b protein as bait in the yeast two-hybrid system, the 2b protein interacted with Homeobox protein 27 (HB27). HB27 belongs to the zinc finger homeodomain family and is known to have a regulatory role in flower development, and responses to biotic and abiotic stress. The interaction between CMV 2b and HB27 proteins was further validated using in planta (bimolecular fluorescence complementation assay) and in vitro far-Western blotting (FWB) methods. In the bimolecular fluorescence complementation assay, these proteins reconstituted YFP fluorescence in the nucleus and the cytoplasmic region as small fluorescent dots. In FWB, positive interaction was detected using bait anti-MYC antibody on the target HB27-HA protein. During CMV infection, upregulation (~3-fold) of the HB27 transcript was observed at 14 days post-infection (dpi) in A. thaliana plants, and expression declined to the same as healthy plants at 21 dpi. To understand the role of the HB27 protein during CMV infection, virus accumulation was determined in HB27-overexpressing (HB27 OE) and knockout mutants. In HB27-overexpressing lines, infected plants developed mild symptoms, accumulating a lower virus titer at 21 dpi compared to wild-type plants. Additionally, knockout HB27 mutants had more severe symptoms and a higher viral accumulation than wild-type plants. These results indicate that HB27 plays an important role in the regulation of plant defense against plant virus infection.

2.
Mol Plant Pathol ; 23(9): 1278-1289, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35706371

RESUMO

During tobamovirus-host coevolution, tobamoviruses developed numerous interactions with host susceptibility factors and exploited these interactions for replication and movement. The plant-encoded TOBAMOVIRUS MULTIPLICATION (TOM) susceptibility proteins interact with the tobamovirus replicase proteins and allow the formation of the viral replication complex. Here CRISPR/Cas9-mediated mutagenesis allowed the exploration of the roles of SlTOM1a, SlTOM1b, and SlTOM3 in systemic tobamovirus infection of tomato. Knockouts of both SlTOM1a and SlTOM3 in sltom1a/sltom3 plants resulted in an asymptomatic response to the infection with recently emerged tomato brown rugose fruit virus (ToBRFV). In addition, an accumulation of ToBRFV RNA and coat protein (CP) in sltom1a/sltom3 mutant plants was 516- and 25-fold lower, respectively, than in wild-type (WT) plants at 12 days postinoculation. In marked contrast, sltom1a/sltom3 plants were susceptible to previously known tomato viruses, tobacco mosaic virus (TMV) and tomato mosaic virus (ToMV), indicating that SlTOM1a and SlTOM3 are not essential for systemic infection of TMV and ToMV in tomato plants. Knockout of SlTOM1b alone did not contribute to ToBRFV and ToMV resistance. However, in triple mutants sltom1a/sltom3/sltom1b, ToMV accumulation was three-fold lower than in WT plants, with no reduction in symptoms. These results indicate that SlTOM1a and SlTOM3 are essential for the replication of ToBRFV, but not for ToMV and TMV, which are associated with additional susceptibility proteins. Additionally, we showed that SlTOM1a and SlTOM3 positively regulate the tobamovirus susceptibility gene SlARL8a3. Moreover, we found that the SlTOM family is involved in the regulation of plant development.


Assuntos
Solanum lycopersicum , Vírus do Mosaico do Tabaco , Tobamovirus , Solanum lycopersicum/metabolismo , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tobamovirus/genética
3.
Mol Plant Pathol ; 22(11): 1317-1331, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34355485

RESUMO

RNA-dependent RNA polymerases (RDRs) regulate important aspects of plant development and resistance to pathogens. The role of RDRs in virus resistance has been demonstrated using siRNA signal amplification and through the methylation of viral genomes. Cucumber (Cucumis sativus) has four RDR1 genes that are differentially induced during virus infection: CsRDR1a, CsRDR1b, and duplicated CsRDR1c1/c2. The mode of action of CsRDR1s during viral infection is unknown. Transient expression of the cucumber mosaic virus (CMV)-2b protein (the viral suppressor of RNA silencing) in cucumber protoplasts induced the expression of CsRDR1c, but not of CsRDR1a/1b. Results from the yeast two-hybrid system showed that CsRDR1 proteins interacted with CMV-2b and this was confirmed by bimolecular fluorescence complementation assays. In protoplasts, CsRDR1s localized in the cytoplasm as punctate spots. Colocalization experiments revealed that CsRDR1s and CMV-2b were uniformly dispersed throughout the cytoplasm, suggesting that CsRDR1s are redistributed as a result of interactions. Transient overexpression of individual CsRDR1a/1b genes in protoplasts reduced CMV accumulation, indicating their antiviral role. However, overexpression of CsRDR1c in protoplasts resulted in relatively higher accumulation of CMV and CMVΔ2b. In single cells, CsRDR1c enhances viral replication, leading to CMV accumulation and blocking secondary siRNA amplification of CsRDR1c by CMV-2b protein. This suggests that CMV-2b acts as both a transcription factor that induces CsRDR1c (controlling virus accumulation) and a suppressor of CsRDR1c activity.


Assuntos
Cucumis sativus , Cucumovirus , Doenças das Plantas/virologia , RNA Polimerase Dependente de RNA , Proteínas Virais , Cucumis sativus/enzimologia , Cucumis sativus/virologia , Cucumovirus/patogenicidade , Protoplastos
4.
PLoS One ; 12(8): e0181829, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28771507

RESUMO

A new member of the genus Deltapartitivirus was identified containing three dsRNAs with an estimated size of 1.71, 1.49 and 1.43 kb. The dsRNAs were extracted from symptomless pigeonpea [Cajanus cajan (L.) Millspaugh] plants cv. Erra Kandulu. This new virus with 4.64 kb genome was tentatively named Arhar cryptic virus-1 (ArCV-1). The genomic RNAs were amplified and characterized by sequence independent single primer amplification. The dsRNAs shared a highly conserved 16 nt 5' non-coding region (5'-GATAATGATCCAAGGA-3'). The largest dsRNA (dsRNA-1) was identified as the viral RNA dependent RNA polymerase (replicase), predicted to encode a putative 55.34 kDa protein (P1). The two other smaller dsRNAs (dsRNA-2 and dsRNA-3) predicted to encode for putative capsid proteins of 38.50kDa (P2) and 38.51kDa (P3), respectively. Phylogenetic analysis indicated that ArCV-1 formed a clade together with Fragaria chiloensis cryptic virus, Rosa multiflora cryptic virus and Rose cryptic virus-1, indicating that ArCV-1 could be a new member of the genus Deltapartitivirus. ArCV-1 3Dpol structure revealed several interesting features. The 3Dpol in its full-length shares structural similarities with members of the family Caliciviridaeand family Picornaviridae. In addition, fourth dsRNA molecule (dsRNA-2A), not related to ArCV-1 genome, was found in the same plant tissue. The dsRNA-2A (1.6 kb) encodes a protein (P4), with a predicted size of 44.5 kDa. P4 shares similarity with coat protein genes of several cryptic viruses, in particular the bipartite cryptic viruses including Raphanus sativus cryptic virus-3. This is the first report of occurrence of a cryptic virus in pigeonpea plants.


Assuntos
Cajanus/virologia , Vírus de Plantas/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Genômica , Modelos Moleculares , Vírus de Plantas/enzimologia , Vírus de Plantas/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo
5.
PLoS One ; 11(9): e0163320, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27668429

RESUMO

Plant viral movement proteins facilitate virion movement mainly through interaction with a number of factors from the host. We report the association of a cell wall localized ascorbate oxidase (CsAO4) from Cucumis sativus with the movement protein (MP) of Cucumber mosaic virus (CMV). This was identified first in a yeast two-hybrid screen and validated by in vivo pull down and bimolecular fluorescence complementation (BiFC) assays. The BiFC assay showed localization of the bimolecular complexes of these proteins around the cell wall periphery as punctate spots. The expression of CsAO4 was induced during the initial infection period (up to 72 h) in CMV infected Nicotiana benthamiana plants. To functionally validate its role in viral spread, we analyzed the virus accumulation in CsAO4 overexpressing Arabidopsis thaliana and transiently silenced N. benthamiana plants (through a Tobacco rattle virus vector). Overexpression had no evident effect on virus accumulation in upper non-inoculated leaves of transgenic lines in comparison to WT plants at 7 days post inoculation (dpi). However, knockdown resulted in reduced CMV accumulation in systemic (non-inoculated) leaves of NbΔAO-pTRV2 silenced plants as compared to TRV inoculated control plants at 5 dpi (up to 1.3 fold difference). In addition, functional validation supported the importance of AO in plant development. These findings suggest that AO and viral MP interaction helps in early viral movement; however, it had no major effect on viral accumulation after 7 dpi. This study suggests that initial induction of expression of AO on virus infection and its association with viral MP helps both towards targeting of the MP to the apoplast and disrupting formation of functional AO dimers for spread of virus to nearby cells, reducing the redox defense of the plant during initial stages of infection.

6.
Indian J Virol ; 24(1): 27-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24426254

RESUMO

Cucumber mosaic virus (CMV) has a wide host range causing severe damage in many important agricultural and ornamental crops. Earlier reports showed the prevalence of CMV subgroup I isolates in India. However, some recent reports point towards increasing incidence of subgroup II isolates in the country. The complete genome of a CMV isolate causing severe mosaic in cucumber was characterized and its phylogenetic analysis with other 21 CMV isolates reported worldwide clustered it with subgroup II strains. The genome comprised of RNA 1 (3,379 nucleotides), RNA 2 (3,038 nucleotides) and RNA 3 (2,206 nucleotides). The isolate showed highest homology with subgroup II isolates: 95.1-98.7, 87.7-98.0, and 85.4-97.1 % within RNA1, RNA2, and RNA3, respectively. RNA1 and RNA2 were closely related to the Japanese isolate while RNA3 clustered with an American isolate. Host range studies revealed that isolate showed severe mosaic symptoms on Nicotiana spp. and Cucumis spp. The isolate induced leaf deformation and mild filiform type symptoms in tomato. To best of our knowledge this is the first report of complete genome of CMV subgroup II isolate from India.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...