Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CBE Life Sci Educ ; 19(3): ar39, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32870092

RESUMO

The testing effect is one of the strongest learning techniques documented to date. Although the effects of testing on high-level learning are promising, fewer studies on this have been done. In this classroom application of the testing effect, we aimed to 1) determine whether a testing effect exists on high-level testing; 2) determine whether higher-level testing has an effect on low-level content retention; and 3) determine whether content knowledge, cognitive skill, or additional components are responsible for this effect. Through a series of two experiments, we confirmed a testing effect on high-level items. However, improved content retention due to testing was not observed. We suggest that this high-level testing effect is due to a better ability to apply specific skills to specific content when this application process has appeared on a previous exam.


Assuntos
Cognição , Aprendizagem
2.
Artigo em Inglês | MEDLINE | ID: mdl-31501685

RESUMO

Despite the importance of tree-thinking and evolutionary trees to biology, no appropriately developed concept inventory exists to measure student understanding of these important concepts. To address this need, we developed a multiple-choice concept inventory consisting of 24 pairs of items, and we provide evidence to support its use among undergraduate students. A set of learning outcomes was developed to guide the creation of the concept inventory. The learning outcomes, student interviews, and student responses were used to develop and revise inventory items. Supporting evidence was gathered from traditional item analysis, exploratory factor analysis, confirmatory factor analysis, traditional reliability analyses, and comparisons to alternative assessments. Appropriate implementation and utility of the concept inventory are discussed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29854045

RESUMO

Education research within the STEM disciplines applies a scholarly approach to teaching and learning, with the intent of better understanding how people learn and of improving pedagogy at the undergraduate level. Most of the professionals practicing in this field have 'crossed over' from other disciplinary fields and thus have faced challenges in becoming experts in a new discipline. In this article, we offer a novel framework for approaching education research design called Backward Design in Education Research. It is patterned on backward curricular design and provides a three-step, systematic approach to designing education projects: 1) Define a research question that leads to a testable causal hypothesis based on a theoretical rationale; 2) Choose or design the assessment instruments to test the research hypothesis; and 3) Develop an experimental protocol that will be effective in testing the research hypothesis. This approach provides a systematic method to develop and carry out evidence-based research design.

4.
J Microbiol Biol Educ ; 17(3): 389-398, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28101265

RESUMO

Darwin described evolution as "descent with modification." Descent, however, is not an explicit focus of most evolution instruction and often leaves deeply held misconceptions to dominate student understanding of common ancestry and species relatedness. Evolutionary trees are ways of visually depicting descent by illustrating the relationships between species and groups of species. The ability to properly interpret and use evolutionary trees has become known as "tree thinking." We used a 20-question assessment to measure misconceptions in tree thinking and compare the proportion of students who hold these misconceptions in an introductory biology course with students in two higher-level courses including a senior level biology course. We found that misconceptions related to reading the graphic (reading the tips and node counting) were variably influenced across time with reading the tips decreasing and node counting increasing in prevalence. On the other hand, misconceptions related to the fundamental underpinnings of evolutionary theory (ladder thinking and similarity equals relatedness) proved resistant to change during a typical undergraduate study of biology. A possible new misconception relating to the length of the branches in an evolutionary tree is described. Understanding the prevalence and persistence of misconceptions informs educators as to which misconceptions should be targeted in their courses.

5.
CBE Life Sci Educ ; 14(1): ar5, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25699543

RESUMO

The "flipped classroom" is a learning model in which content attainment is shifted forward to outside of class, then followed by instructor-facilitated concept application activities in class. Current studies on the flipped model are limited. Our goal was to provide quantitative and controlled data about the effectiveness of this model. Using a quasi-experimental design, we compared an active nonflipped classroom with an active flipped classroom, both using the 5-E learning cycle, in an effort to vary only the role of the instructor and control for as many of the other potentially influential variables as possible. Results showed that both low-level and deep conceptual learning were equivalent between the conditions. Attitudinal data revealed equal student satisfaction with the course. Interestingly, both treatments ranked their contact time with the instructor as more influential to their learning than what they did at home. We conclude that the flipped classroom does not result in higher learning gains or better attitudes compared with the nonflipped classroom when both utilize an active-learning, constructivist approach and propose that learning gains in either condition are most likely a result of the active-learning style of instruction rather than the order in which the instructor participated in the learning process.


Assuntos
Biologia/educação , Educação/organização & administração , Aprendizagem Baseada em Problemas , Análise Custo-Benefício , Currículo , Educação/economia , Avaliação Educacional , Humanos , Aprendizagem , Modelos Educacionais , Projetos de Pesquisa , Classe Social , Estudantes , Universidades
6.
PLoS One ; 8(8): e70270, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950918

RESUMO

This study examined the effects of exam length on student performance and cognitive fatigue in an undergraduate biology classroom. Exams tested higher order thinking skills. To test our hypothesis, we administered standard- and extended-length high-level exams to two populations of non-majors biology students. We gathered exam performance data between conditions as well as performance on the first and second half of exams within conditions. We showed that lengthier exams led to better performance on assessment items shared between conditions, possibly lending support to the spreading activation theory. It also led to greater performance on the final exam, lending support to the testing effect in creative problem solving. Lengthier exams did not result in lower performance due to fatiguing conditions, although students perceived subjective fatigue. Implications of these findings are discussed with respect to assessment practices.


Assuntos
Biologia/educação , Cognição/fisiologia , Avaliação Educacional , Fadiga Mental , Análise e Desempenho de Tarefas , Adulto , Humanos , Fadiga Mental/diagnóstico , Resolução de Problemas , Estudantes/psicologia , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...